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Introduction 
This program will solve any initial value problem 
 

𝑦!   =   𝑓 𝑡,𝑦 ,          𝑦 𝑡!   =   𝑦!, 
 
using Euler’s Method (em.M) and Modified Euler’s Method (mem.M).  It is 
sufficiently general so that it can be used for an arbitrary function 𝑓 𝑡,𝑦 , with stepsize 
ℎ and interval 𝑎, 𝑏 .  Both the code and commented explanations for these functions 
and the script used can be found in the appendix.  
 

A Using these functions the following initial value problem was solved: 
 

𝑦! =   −4𝑡!𝑦!;           𝑦 −𝑎 =   
1

𝑎! + 1 ;           𝑡   ∈ −𝑎,𝑎  

 
The value of 𝑎   =   7 was fixed for the analysis of this program. This value was 
chosen to observe the behavior of the methods.   

 
To verify that 𝑦 𝑡 =    !

(!!!!)
 is the exact solution to the initial value problem, the 

derivative of the exact solution will be taken and then both 𝑦 𝑡  and 𝑦! 𝑡  will be 
plugged-in to their corresponding variables in the IVP and checked for equality.  
The computational knowledge engine, WolframAlpha, computed the derivative of 
the exact solution to be:  
 

𝑑𝑦
𝑑𝑡 =   −

4𝑡!

𝑡! + 1 ! 

𝑦!   =   −4𝑡!𝑦! =   −4𝑡!
1

𝑡! + 1

!

  =   −
4𝑡!

𝑡! + 1 ! 

 
 Obviously, the initial condition matches.  Therefore, this is indeed the exact 

solution to the IVP.  Also, notice how the solution is an even function, this 
implies the graph will be symmetric across the y-axis => 𝑦 −𝑎 =   𝑦(𝑎). 

  
 Using values of stepsize ℎ = 10!!, 10!!, 10!!, Euler’s Method and Modified 

Euler’s Method calculated approximations 𝑤 𝑡!  for actual values of 𝑦 𝑡! .  This 
is modeled in the following graphs: 
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Graph 1: Euler’s and Modified Euler’s Method Approximation 𝑤 𝑡!  Compared to 𝑦 𝑡!   
ℎ   = 10!! 

 
 

Graph 2: Euler’s and Modified Euler’s Method Approximation 𝑤 𝑡!  Compared to 𝑦 𝑡!  
ℎ   = 10!!  

 
 
Graph 3: Euler’s and Modified Euler’s Method Approximation 𝑤 𝑡!  Compared to 𝑦 𝑡!  

ℎ   = 10!!  
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B  By analyzing the output it is obvious that the smaller the stepsize h the smaller 
the error. The largest part of the error occurs in the middle of the graph causes 
the larger intervals with same stepsizes to be more spread out.  By closing in on 
𝑡 = 0 with the interval the central error will have a more sufficient amount of 
points to be smaller and the endpoint error will be larger than with using a larger 
interval.  By choosing larger intervals in the further away each point will be to 
the next causing central error to be greater than with a smaller interval and 
endpoint error will be better than with a smaller interval. 

 
Assuming the true answer is not known, it is possible to estimate the accuracy of 
Euler’s Method for this problem by comparing the Modified Euler’s Method to 
Euler’s. 

 
Table 1: Comparing Modified Euler’s Method to Euler’s Method (ℎ = 10!!) 

Stepsize ℎ = 10!! 
Method Euler's Modified Euler's Difference 

Central Error 𝑡 = !
!

 0.787479721389898 0.000921042531047 -0.786558678858851 
Boundary Error (𝑡 = ℎ) -0.000000122010730 -0.000000122048838 -0.000000000038108 
Boundary Error 𝑡 = 𝑁 + 1  -0.000000122048838 -0.000000000000106 0.000000122048732 

 
Table 2: Comparing Modified Euler’s Method to Euler’s Method (ℎ = 10!!) 

Stepsize ℎ = 10!! 
Method Euler's Modified Euler's Difference 

Central Error 𝑡 = !
!

 0.271916413298950 0.000009227004581 -0.271907186294369 
Boundary Error 𝑡 = ℎ  -0.000000012201073 -0.000000012201454 -0.000000000000381 
Boundary Error 𝑡 = 𝑁 + 1  -0.000000012201454 0.000000000000000 0.000000012201454 

 
Table 3: Comparing Modified Euler’s Method to Euler’s Method (ℎ = 10!!) 

Stepsize ℎ = 10!! 
Method Euler's Modified Euler's Difference 

Central Error 𝑡 = !
!

 0.036037320189496 0.000000092234865 -0.036037227954631 
Boundary Error 𝑡 = ℎ  -0.000000001220107 -0.000000001220111 -0.000000000000004 
Boundary Error 𝑡 = 𝑁 + 1  -0.000000001220111 0.000000000000000 0.000000001220111 

 
As seen in the “Difference” columns, Modified Euler’s Method is extremely 
accurate. 
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Another way the accuracy of Euler’s Method can be estimated for this problem is 
by comparing different stepsizes of ℎ.  The difference between Euler’s Method’s 
approximate solutions for different stepsizes (second column of the above tables) 
can be seen in the following table.  Note: the correct value of 𝑡 must be chosen in 
order to perform this comparison. 
 

Table 4: Comparing Different Stepsizes of Euler’s Method (the “Stepsize(#) – Stepsize(#)” 
corresponds to the Euler values in the second columns (Euler’s Method) in the above tables) 

Method Euler’s 
Stepsize(#) – Stepsize(#): 10!! − 10!! 10!! − 10!! 10!! − 10!! 

Central Error 𝑡   = !
!

 0.751442401200402 0.515563308090948 0.235879093109454 
Boundary Error 𝑡   =   ℎ  -0.000000120790623 -0.000000109809657 -0.000000010980966 

Boundary Error 𝑡 = 𝑁 + 1  -0.000000120828727 -0.000000109847384 -0.000000010981343 
 

The previous tables show that the smaller the stepsize, the more steps, the 
smaller the error.  If the Difference column is observed more closely it can be 
seen that the Modified Euler’s Method with sufficient stepsize, can produce a 
fairly accurate solution. 
 
Using the error formulas, an error bound can be obtained analytically for Euler’s 
Method.  First, the continuous function 𝑓 needs to be checked for satisfying a 
Lipschitz condition on the convex set 𝐷 = 𝑡,𝑦      𝑎 ≤ 𝑡 ≤ 𝑏  and  −∞ < 𝑦 < ∞} 
by taking the partial derivative of f with respect to y.  Then by plugging in the 
exact solution in for 𝑦 and finding the value of 𝑡 that makes the partial 
derivative as large as it can be, a Lipschitz constant 𝐿 can be found. 
 

𝜕𝑓
𝜕𝑦 = 8𝑡!! =

8𝑡!

𝑡! + 1  

 
WolframAlpha, computed the max partial derivative of f w.r.t. 𝑦 at 𝑡 =   ± 3! ≈
±1.32. 
 

8𝑡!

𝑡! + 1 ≤
8 3! !

3! !
+ 1

=
8 3! !

3+ 1 =
8 3! !

4 = 2 3! !
≈ 4.559 ≤ 4.6 = 𝐿 

 
Second, WolframAlpha computed the bound, M, for the second derivative of the 
unique solution to the initial value problem at 𝑡 ≈ ±0.57. 
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𝑦!! =
4  𝑡!   −3+ 5  𝑡!

𝑡! + 1 ! =
4 ∗ 0.57!   −3+ 5 ∗ 0.57!

0.57! + 1 ! ≈ 2.377 ≤ 2.4 = 𝑀 

 
 
Third, since 𝑓 now satisfies a Lipschitz Condition with 𝐿 on 𝐷 and the second 
derivative of the unique solution is bounded by 𝑀, the following error formula 
can be used: 
 

𝑦 𝑡! − 𝑤! ≤
ℎ𝑀
2𝐿 𝑒! !!!! − 1  

 
The largest error occurs at 𝑡 = 0 in the interval 𝑎, 𝑏 = −8, 8  when ℎ = 10!!. 
 

Actual  error = 𝑦 𝑡! − 𝑤! = 1− 0.787 = 0.223 
 

Euler!s  error  bound =
ℎ𝑀
2𝐿 𝑒! !! − 1 =

10!! ∗ 2.4
2 ∗ 4.6 𝑒!.! ! − 1 = 2.503×10!" 

 
The error computed from the approximations was much better than the 
analytical bound. 

 
 

C Assuming that the true solution 𝑦 𝑡  and the approximate solution 𝑦 𝑡, ℎ  
obtained from Euler’s Method with step size h satisfies a relation of the form  

 
𝑦 𝑡 = 𝑦 𝑡, ℎ +𝑚!ℎ +𝑚!ℎ!   + 𝑂 ℎ!  (1) 

 
Richardson’s Extrapolation process can be used to show how 𝑂 ℎ!  and 𝑂 ℎ!  
approximations to the true solution can be obtained using the results from 
Euler’s method for step sizes ℎ, 0.1ℎ, and 0.01ℎ.  Specific formulas for these 
improved approximations can be seen below.  
 
By changing ℎ in 1  to 0.1ℎ: 
𝑦 𝑡 = 𝑦 𝑡, !

!"
+𝑚!

!
!"
  +𝑚!

!
!"

!
+ 𝑂 h!  (2) 

 
By 10 ∗ 2 − 1 : 

9𝑦 𝑡 = 10𝑦 𝑡,
ℎ
10 − 𝑦 𝑡, ℎ −

99
100𝑚! ℎ! + 𝑂 ℎ!  
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𝑦 𝑡 =
10
9 𝑦 𝑡,

ℎ
10 −

1
9𝑦 𝑡, ℎ −

11
100𝑚! ℎ! + 𝑂 ℎ!  

 
where the 𝑂 ℎ!  approximation formula is: 𝑦! 𝑡, ℎ = !"

!
𝑦 𝑡, !

!"
− !

!
𝑦 𝑡, ℎ  

 
This means that: 𝑦 𝑡 − 𝑦! 𝑡, ℎ = − !!

!""
𝑚! ℎ! + 𝑂 ℎ!  now, 

𝑦 𝑡 = 𝑦! 𝑡, ℎ − !!
!""

𝑚! ℎ! + 𝑂 ℎ!  (3) 
 
By changing ℎ in 3  to 0.1ℎ: 
𝑦 𝑡 = 𝑦! 𝑡, !

!"
− !!

!""
𝑚!

!
!"

!
+ 𝑂 ℎ!  (4) 

 
By 100 ∗ 4 − 3 : 

99𝑦 𝑡 = 100𝑦! 𝑡,
ℎ
10 − 𝑦! 𝑡, ℎ + 𝑂 ℎ!  

𝑦 𝑡 =
100
99 𝑦! 𝑡,

ℎ
10 −

1
99𝑦! 𝑡, ℎ + 𝑂 ℎ!  

 
where the 𝑂 ℎ!  approximation formula is: 𝑦! 𝑡, ℎ = !""

!!
𝑦! 𝑡, !

!"
− !

!!
𝑦! 𝑡, ℎ  

𝑦! 𝑡, ℎ =
100
99

10
9 𝑦 𝑡,

ℎ
10
10 −

1
9𝑦 𝑡,

ℎ
10 −

1
99

10
9 𝑦 𝑡,

ℎ
10 −

1
9𝑦 𝑡, ℎ  

𝑦! 𝑡, ℎ =
100
891 10𝑦 𝑡,

ℎ
100 − 𝑦 𝑡,

ℎ
10 −

1
891 10𝑦 𝑡,

ℎ
10 − 𝑦 𝑡, ℎ  

𝑦! 𝑡, ℎ =
1
891 1000𝑦 𝑡,

ℎ
100 − 110𝑦 𝑡,

ℎ
10 + 𝑦 𝑡, ℎ  

 
 

D The Richardson approximations to the numerical solution of the stated IVP can 
be computed using the results obtained in (A).  The following graphs compare 
the results of Modified Euler’s from part (A) to the Richardson approximations.  
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Graph 4: Error of Richardson’s and Modified Euler’s Method 
ℎ   = 10!!  

 
 

Graph 5: Error of Richardson’s and Modified Euler’s Method  
ℎ   = 10!!  
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Graph 6: Error of Richardson’s and Modified Euler’s Method  
ℎ   = 10!!  

 
 

Richardson’s extrapolation (eRsons.M) generates high-accuracy results from 
low-order formulas.  This is a result of the truncation error being dependent on 
h, and in turn having a predictable form.  The object of extrapolation is to find 
an easy way to combine the 𝑂 ℎ  approximations in such a way that the result is 
a formula with a higher-order truncation error.  As shown in the graphs above, 
Modified Euler’s is still extremely accurate, even more accurate with central error 
than Richardson’s 𝑂 ℎ!  formula until ℎ = 10!!, Richardson’s 𝑂 ℎ!  formula 
becomes even more accurate than Modified Euler’s.  The error at the beginning 
of the interval is better than the end of the interval because the truncation error 
propagates throughout the method. 
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Appendix (4 functions + 1 script) 
 

% function f(t,y) 
function fty = fty(t,y) 
    fty = -4 * t^3 * y^2; 
end 
 
 
function [ approximations,iterations ] = em( a, b, h, c ) 
%em Euler's Method for solving IVPs 
%      To approximate the solution to the IVP 
%      y' = f(t,y)  ,  a <= t <= b  ,  y(a) = c 
%      at N+1 equally spaced numbers in the interval [a,b] 
 
%   INPUT: a: left endpoint 
%          b: right endpoint 
%          h: stepsize 
%          c: initial condition (alpha) 
%   OUTPUT: approximations: approximation to y at time t 
%           iterations: N + 1 iterations of time 
 
%   Step 1: Set N = (b-a)/h; 
%               t = a; 
%               w = c; 
%           OUTPUT (t,w) 
%   Step 2: For i = 1:N % do Steps 3, 4 
%        Step 3: Set w(i) = w + h*f(t,w); % Compute w(i) 
%                    t(i) = a + i*h; % Compute t(i) 
%        Step 4: OUTPUT t(i),w(i) 
%   Step 5: STOP 
 
format long; 
 
% Step 1 
N = round((b-a)/h); 
w = zeros(N + 1,1); 
w(1) = c; 
t = zeros(N+1,1);  
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t(1) = a; 
 
% Step 2 
for i = 2:N+1 % do Steps 3 
    % Step 3: Compute w(i) and t(i) 
    w(i) = w(i-1) + h*fty(t(i-1),w(i-1)); 
    t(i) = a + i*h; 
end 
 
% Step 4 
approximations = w; 
iterations = t; 
end 
 
 
function [ approximations,iterations ] = mem( a, b, h, c ) 
%mem Modified Euler's Method for solving IVPs 
%      To approximate the solution to the IVP 
%      y' = f(t,y)  ,  a <= t <= b  ,  y(a) = c 
%      at N+1 equally spaced numbers in the interval [a,b] 
 
%   INPUT: a: left endpoint 
%          b: right endpoint 
%          h: stepsize 
%          c: initial condition (alpha) 
%   OUTPUT: approximations: approximation to y at time t 
%           iterations: N + 1 iterations of time 
 
%   Step 1: Set N = (b-a)/h; 
%               t = a; 
%               w = c; 
%           OUTPUT (t,w) 
%   Step 2: For i = 1:N % do Steps 3, 4 
%        Step 3: % Compute w(i) and t(i) 
%                Set w(i) = w(i-1) + (h/2)*(fty(t(i-1), w(i-1)) + 
%                    fty(t(i-1)+h, w(i-1) + h*fty(t(i-1), w(i-1)))); 
%                    t(i) = a + i*h; 
%        Step 4: OUTPUT t(i),w(i) 
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%   Step 5: STOP 
 
format long; 
 
% Step 1 
N = round((b-a)/h); 
w = zeros(N+1,1); 
w(1) = c; 
t = zeros(N+1,1);  
t(1) = a; 
 
% Step 2 
for i = 2:N+1 % do Steps 3 
    % Step 3:  Compute w(i) and t(i) 
    w(i) = w(i-1) + (h/2)*(fty(t(i-1), w(i-1)) + fty(t(i-1)+h, w(i-1) + h*fty(t(i-1), w(i-
1)))); 
    t(i) = a + (i-1)*h; 
end 
 
% Step 4 
approximations = w; 
iterations = t; 
end 
 
function [ y2,y3,iterations ] = eRsons( a,h,c ) 
%eRsons Richardsons Extrapolation Process on Eulers Method for solving IVPs 
%   Detailed explanation is in part C 
 
%   INPUT: a: interval 
%                 h: stepsize 
%                 c: initial value 
%   OUTPUT: y2: Richardson O(h2) approximation 
%                     y3: Richardson O(h3) approximation 
%                     iterations: N + 1 iterations of time 
 
format long; 
 
% Step 1 
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N = round((a--a)/h); 
yn = c; 
 
[we1,te1] = em(-a,a,h,yn); 
[we2] = em(-a,a,0.1*h,yn); 
[we3] = em(-a,a,0.01*h,yn); 
y2 = zeros(length(te1),1); 
y3 = zeros(length(te1),1); 
 
for i = 1:length(te1) 
    y2(i) = (10*we2(10*(i-1)+1)-we1(i))/9; 
    y3(i) = (1000*we3(100*(i-1)+1)-110*we2(10*(i-1)+1)+we1(i))/891; 
end 
 
iterations = te1; 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
%% SCRIPT 
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clear all; 
format long; 
 
% Stepsize (10^(-3, -4, and -5)) 
h = 10^-3; 
 
% BC: 5 <= a <= 10 
% a = 5; 
a = 8; 
 
% Number of steps 
N = round((a--a)/h); 
 
% IC % y(-a) = y(a) since y is an even function 
yn = 1/((-a)^4 + 1); 
 
% Actual Value 
actual = zeros(round(N+1),1); 
i = 1; 
for x = -a:h:a 
    actual(i) = 1/(x.^4 + 1); 
    i = i+1; 
end 
 
% Euler's Method 
tic 
[we,te] =  em(-a,a,h,yn); 
toc 
 
% Modified Euler's Method 
tic 
[wm,tm] = mem(-a,a,h,yn); 
toc 
 
% Richardson's Extrapolation 
tic 
[R2,R3,tr] = eRsons(a,h,yn); 
toc 
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% Graphs 
% Actual vs Euler's vs Modified Euler's 
figure 
plot(tm,actual,'b') 
hold on 
plot(tm,wm,'r') 
hold on 
plot(te,we,'g') 
hold on 
legend('Actual','Modified Eulers','Eulers') 
AMEtitle = ['Interval [', num2str(-a), ', ', num2str(a), '] Stepsize h = E', 
num2str(log10(h))]; 
title(AMEtitle) 
 
% Error of Actual vs Richardson's and Modified Euler's 
figure 
semilogy(tr,abs(R2-actual),'m') 
hold on 
semilogy(tr,abs(R3-actual),'r') 
hold on 
semilogy(tr,abs(wm-actual),'g') 
hold on 
legend('Richardsons O(h2)','Richardsons O(h3)','Modified Eulers') 
ARMtitle = ['Interval [', num2str(-a), ', ', num2str(a), '] Stepsize h = E', 
num2str(log10(h))] 
title(ARMtitle) 
 
% error @ center 
ce  = 1 - we(N/2); 
cm  = 1 - wm(N/2); 
cr2 = 1 - R2(N/2); 
cr3 = 1 - R3(N/2); 
fprintf('           Eulers Central  Error: b = %16.15f \n',ce) 
fprintf('  Modified Eulers Central  Error: b = %16.15f \n',cm) 
fprintf('Richardsons O(h2) Central  Error: b = %16.15f \n',cr2) 
fprintf('Richardsons O(h3) Central  Error: b = %16.15f \n',cr3) 
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% error @ boundary 
bbe = yn - we(2); 
bee = yn - we(N+1); 
bbm = yn - wm(2); 
bem = yn - wm(N+1); 
bbr2 = yn -  R2(2); 
ber2 = yn -  R2(N+1); 
bbr3 = yn -  R3(2); 
ber3 = yn -  R3(N+1); 
fprintf('           Eulers Boundary Error: bbe = %16.15f \n',bbe) 
fprintf('           Eulers Boundary Error: bee = %16.15f \n',bee) 
fprintf('  Modified Eulers Boundary Error: bbm = %16.15f \n',bbm) 
fprintf('  Modified Eulers Boundary Error: bem = %16.15f \n',bem) 
fprintf('Richardsons O(h2) Boundary Error: bbr2 = %16.15f \n',bbr2) 
fprintf('Richardsons O(h2) Boundary Error: ber2 = %16.15f \n',ber2) 
fprintf('Richardsons O(h3) Boundary Error: bbr3 = %16.15f \n',bbr3) 
fprintf('Richardsons O(h3) Boundary Error: ber3 = %16.15f \n',ber3) 


