

Analysis of Interpolating Polynomials: Hermite vs. Spline
By: Adam Headley 24 November 2014

Objective:

Considering the function 𝑓 𝑥 = cos 𝜋 𝑥! + 𝑥 on the interval 0,2 with the
number points 𝑛 = !

!
+ 1, a free cubic spline polynomial over step size ℎ can be

computed by using Algorithm 3.4 from Burden’s Numerical Analysis. Choosing the
points 𝑥! = 0, 𝑥! = ℎ, 𝑥! = 2ℎ, . . ., 𝑥!!! = 2− ℎ, 𝑥! = 2. Given 𝑛 points, an interval in
a vector 𝑥 = 𝑥!,… , 𝑥! , a set of corresponding constants a from function outputs
𝑓 𝑥 = 𝑎 = 𝑎!,… ,𝑎! , the program outputs vectors with corresponding coefficients 𝑏, 𝑐,
and 𝑑 for the spline polynomials

𝑠 𝑥 = 𝑠! 𝑥 = 𝑎! + 𝑏! 𝑥 – 𝑥! + 𝑐! 𝑥 – 𝑥!
! + 𝑑! 𝑥 – 𝑥!

!

with natural boundary conditions at the ends of our interval, corresponding to
the second derivative of 𝑓 𝑥 at the end points being set to 0.

In the second part of this program the function 𝑓 𝑥 will be interpolated with a
Hermite polynomial. This type of interpolation involves the use of the functions
derivatives at the 𝑛 points.

Program: Interpolating Spline Polynomial

The script, functions, and graphs were produced in MATLAB. The first code
block is a function M-file is named fspline.m, then the script for which fspline.m is
used to display five graphs that show the function 𝑓 𝑥 (blue), the spline (green), and
the absolute error (red). The second function M-file is a function that produces a
Hermite interpolating polynomial named fhermite.m. The results of both M-file
functions are then compared.

The code for fspline.m outputs the coefficients of the spline polynomials from 𝑛
points with an adjustable step size ℎ and the values of the function at those points by
solving a decomposed triangular system of matrices. From these coefficients the script
produces piecewise cubic splines connecting the points.

It is appropriate to use free boundary conditions in this case, instead of clamped

boundary conditions because of the behavior of the function 𝑓 𝑥 = cos 𝜋 𝑥! + 𝑥 .
This function’s quickest oscillation exists around the endpoint 𝑥 = 2, producing a

 Headley 2

major source of error for the interpolating spline polynomial. Since the first derivatives
at the end points are not predestined and the second derivative set to 0 at the end
points, the spline has the self-determination it needs to account for slope and concavity
as it approaches 𝑥 = 2.

The following code only shows the script for ℎ = 1. To see the other step sizes
use the exact same code, only changing the initial value for ℎ. The a values below are
constants from function outputs 𝑓 𝑥! = 𝑎!, and the 𝑏, 𝑐, and 𝑑 values are the unknown
coefficients of the interpolating spline polynomials.

Below are five graphs comparing 𝑓 𝑥 = cos 𝜋 𝑥! + 𝑥 to the interpolating
spline polynomials corresponding to the five different steps sizes h. In each case, the
function 𝑓 𝑥 is in blue, the interpolating spline polynomial s(x) is in green, and the
absolute error in red. Below each graph is the max absolute error with a corresponding
interval for x.

max absolute error: 2 with x in [0,2]

 Headley 3

max absolute error: 1.858 with x in [1.5,2]

max absolute error: 1.974 with x in [1.4,1.6]

 Headley 4

max absolute error: 1.010 with x in [1.8,1.9]

max absolute error: 0.2975 with x in [1.95,2]

 Headley 5

Results and Error Analysis (Spline):

 Using a uniform step size ℎ makes for easy computation but this style of step size
is not always the best for minimizing error. Notice the transition of error between step
sizes. The error calms down at the start 𝑥 = 0 but tends to increasingly isolate itself
around 𝑥 = 2. The increase of oscillations 𝑓 𝑥 yields about 𝑥 = 2 causes steeper
slopes and abrupt changes in concavity. The freedom corresponding to the first
derivative of the interpolating spline polynomial’s endpoints causes the polynomial
trouble with maintaining a level relationship with the function but still intersecting at
the associated 𝑛 points. Decreasing the step size allows the behavior of the
interpolating spline polynomial to be more level with the given functions since more
points are used.

 To form a bound for the error, observe Thm 3.13 from Burden’s Numerical
Analysis, 𝑓 𝑥 − 𝑠 𝑥 = ! ! ! !

!"#
 × 𝑚𝑎𝑥 𝑥!!! – 𝑥!

!
 for 𝜉 ∈ [0,2] and 0 ≤ 𝑗 ≤ 𝑛 − 1.

The bound using the fourth derivative is 𝑓 ! 𝜉 = 2.774758 × 10! at 𝑥 = 2, however this
explosion yields no essential information about how accurate the approximations is. Since
most of the error for the most accurate case is in the interval [1.95,2], that implies 𝜉
resides there. The clamped spline polynomial has a maximum error of 3.6035 for ℎ = 0.1
which is not as accurate as the natural spline polynomial’s max error of 1.010 for ℎ = 0.1.

Table 1: Fourth Derivative of 𝑓 𝜉 Table 2: Absolute Error with corresponding
Step Sizes

𝜉 𝑓 ! 𝜉

1.9 -1.177944 x 106

1.95 -1.253286 x 106

1.975 1.04521 x 106

1.999999 2.774732 x 106

1.9999999 2.774755 x 106

1.99999999 2.774758 x 106

2 2.774758 x 106

ℎ 𝑥 Interval Absolute Error

1 [0,2] 2

0.5 [1.5,2] 1.858

0.2 [1.4,1.6] 1.974

0.1 [1.8,1.9] 1.010

0.05 [1.95,2] 0.2975

 Headley 6

To obtain an idea of a bound for the estimated error observe that the behavior of the
interpolating spline polynomial between 𝑦 = −1 and 𝑦 = 1 compared to the given
functions. Notice the polynomial always resides between them. This implies that the
absolute error between the given function and the interpolating spline polynomial
cannot exceed 2 in this interval with the given step sizes. Using ℎ = 1 as the minimal
case producing the most error.

Reference the graph below for the following. Observing that most of the error
occurs closer to 𝑥 = 2, it would be appropriate to chose a non-uniform step size to
obtain a better approximation. Notice that a cubic polynomial could at best cover one
full oscillation due to its containing at most three distinct roots and looks very similar
to – cos 𝑥 for 𝑥 = [–𝜋/2, 3𝜋/2]. By observing the graphs above closely, notice the
greatest portion of the error exists in the interval [1.5,2]. This implies that the more
oscillations that an interpolating spline polynomial covers the worse the approximation
for cos(𝑥) will become. To apply this concept to choosing five points, it is easier to
consider h in respect to 𝑦! = 𝑥!! + 𝑥! instead of 𝑥 adaptively placing most of the points
in the high-erred interval [1.5, 2]. This is obvious because for 𝑥 > 1, 𝑦 increases
considerably faster than 𝑥, causing more oscillations to occur in this interval. Choosing
five points such that cos 𝜋𝑦! = cos !!

!
. This implies that 𝑦! =

!"
!
= !

!
 since 𝑦! = 10.

Therefore the rest of the y values should be 𝑦! = 1,𝑦! =
!
!
,𝑦! = 5,𝑦! =

!"
!
,𝑦! = 10. By

approximating the 𝑥! values 𝑥! = 0, 𝑥! = 1.11, 𝑥! = 1.51, 𝑥! = 1.79, 𝑥! = 2.

 Headley 7

Program: Interpolating Hermite Polynomial:

 Using Algorithm 3.3 from Burden’s Numerical Analysis an interpolating Hermite
polynomial can be formed and then compared to the interpolating spline polynomial.
After calculating the first derivatives of 𝑓 𝑥 at each 𝑥 value, the interpolating Hermite
polynomial can be constructed. The following code yields 42 coefficients for a 41 degree
approximating polynomial.

Using the similar plot commands to for spline functions, the following graph compares
Hermite (yellow) to spline (blue).

 Headley 8

Results: Hermite vs. Spline:

The purpose of this programming assignment was to observe the end behavior for
different types of interpolation. Above explains the error analysis for the interpolating
natural spline polynomial. For ℎ = 0.1 the Hermite polynomial produces a fairly good
estimate as long as the endpoints are left out because it explodes to values around 100
when really close to them, within 10!! distance of it. The graph does not show it is
because the endpoints were removed to observe the general behavior from (0,2). This
occurrence is not surprising due to a Hermite polynomial because the use of first
derivatives, similar to interpolating clamped spline polynomials behavior at the
endpoints.

Conclusion:

 In the end, each case generated a high error on the right sides of the intervals.
The max error values for ℎ = 1, ℎ = 0.5, and ℎ = 0.2 step sizes all had similar max
absolute errors, but each smaller iteration of h produces an interpolating natural spline
polynomial more flush with the given function 𝑓(𝑥). The smaller the step size ℎ, the
bigger 𝑛, the more points, the more control the spline has on the behavior of these
oscillations because they become increasingly more frequent as 𝑥 increases. This makes
it difficult to develop a way to choose points, the step sizes would not be equal. A good
method would be to guarantee the maximums and minimums interpolating polynomial
lines up with the given function’s maximums and minimums. Or cleverly distribute the
points according to each oscillation, as explained on page 9 of this report.

 Headley 9

Analysis

function [b,c,d] = fspline(n,x,a)
% fspline To construct the cubic spline interpolant S for the function f,
% defined at the numbers x(0) < x(1) < ··· < x(n),
% satisfying S''(x(0)) = S''(x(n)) = 0
% This is a direct implimentation of Algorithm 3.4 from Burden's % Numerical Analysis
%
% INPUT n;
% x(1), ..., x(n);
% a(0) = f(x(0)), a(1) = f(x(1)), ..., a(n) = f(x(n))
%
% OUTPUT a(j), b(j), c(j), d(j) for j = 0, 1, ..., n-1
%
% Note: S(x) = S(j)(x)
% S(j)(x) = a(j) + b(j)(x - x(j)) + c(j)(x - x(j))^2 + d(j)(x - x(j))^3
% for x(j) < x < x(j+1)
%
%
% Step 1: For i = 0, 1, ..., n-1
% set h(i) = x(i+1) - x(i)
%
% Step 2: For i = 1, 2, ..., n-1
% set A(i) = 3/h(i)(a(i+1) - a(i)) - 3/h(i-1)(a(i) - a(i-1))
%
% Step 3: Set l(0) = 1;
% (Steps 3, 4, 5, and part of Step 6
% solve a tridiagonal linear system
% using a method described in Algorithm 6.7.)
% Set u(0) = 0;
% Set z(0) = 0;
%
% Step 4: For i = 1, 2, ..., n-1
% set l(i) = 2(x(i+1) - x(i-1)) - h(i-1) u(i-1);
% u(i) = h(i)/l(i);
% z(i) = (A(i) - h(i-1) z(i-1))/l(i);
%
% Step 5: Set l(n) = 1;

 Headley 10

% z(n) = 0;
% c(n) = 0;
%
% Step 6: For j = n-1, n-2, ..., 0
% set c(j) = z(j) - u(j) c(j+1);
% b(j) = (a(j+1) - a(j))/h(j) - h(j)(c(j+1) + 2c(j))/3;
% d(j) = (c(j+1) - c(j))/(3h(j));
% Step 7: OUTPUT (a(j),b(j),c(j),d(j) for j = 0, 1, ..., n - 1);
% STOP

hi = zeros(1,n);

for i = 1:n-1
 hi(i) = x(i+1) - x(i);
end

A = zeros(1,n-1);

for i = 2:n-1
 A(i) = (3/hi(i)) * (a(i+1) - a(i)) - (3/hi(i-1)) * (a(i) - a(i-1));
end

l = zeros(1,n-1);
l(1) = 1;

u = zeros(1,n-1);
u(1) = 0;

z = zeros(1,n-1);
z(1) = 0;
z(n) = 0;

for i = 2:n-1
 l(i) = 2*(x(i+1) - x(i-1)) - hi(i-1) * u(i-1);
 u(i) = hi(i)/l(i);
 z(i) = (A(i) - hi(i-1) * z(i-1))/l(i);
end

 Headley 11

b = zeros(1,n-1);
c = zeros(1,n);
d = zeros(1,n-1);

c(n) = 0;

for j = n-1:-1:1
 c(j) = z(j) - u(j) * c(j+1);
 b(j) = (a(j+1) - a(j))/hi(j) - hi(j) * (c(j+1) + 2*c(j))/3;
 d(j) = (c(j+1) - c(j))/(3*hi(j));
end

c = c(1:n-1);
end

%% Script
% change h for corresponding step sizes h = (1, 0.5, 0.2, 0.1, 0.05)
h = 1; % this is the only line that changes in the script!

n = (2/h) + 1;

x = zeros(1,n);
x(1) = 0;
x(n) = 2;

for j = 2:n-1
 x(j) = x(j-1) + h;
end

% Consider the function
% f = cos(pi * (x.^3 + x));
% on the interval 0 ≤ x ≤ 2

a = zeros(1,n);
for j = 1:n
 a(j) = cos(pi*(x(j).^3 + x(j)));
end

 Headley 12

% natural cubic spline function
[b,c,d] = fspline(n,x,a);

for i = 1:n-1
 % spline polynomials on respective interval
 X(i,:) = linspace(x(i),x(i+1));
end

figure
hold on

title(['Spline Approximation for h = ', num2str(h)])

for i = 1:n-1
 % plotting function (BLUE)
 plot(X(i,:), cos(pi*(X(i,:).^3 + X(i,:))), 'b');

 % plotting spline approximation (GREEN)
 plot(X(i,:), a(i) + b(i).*(X(i,:) - x(i)) + c(i).*(X(i,:) - x(i)).^2 + d(i).*(X(i,:) -
x(i)).^3, 'g');

 % plotting error (RED)
 plot(X(i,:), abs(cos(pi*(X(i,:).^3 + X(i,:))) - (a(i) + b(i).*(X(i,:) - x(i)) + c(i).*(X(i,:)
- x(i)).^2 + d(i).*(X(i,:) - x(i)).^3)), 'r');
end

function [Q] = fhermite(x,a,d)
% fhermite Summary of this function goes here
% INPUT numbers x(0),x(1), ..., x(n);
% values f(x(0)), ...,f(x(n))
% f'(x(0)), ..., f'(x(n))
%
% OUTPUT numbers Q(0,0), Q(1,1), ..., Q(2n+1,2n+1)
% where H(x) = Q(0,0) + Q(1,1)(x − x(0)) + Q(2,2)(x − x(0))^2
% + Q(3,3)*(x − x(0))^2 * (x − x(1))
% + Q(4,4)*(x−x(0))^2 * (x−x(1))2 + ···

 Headley 13

% + Q(2n+1,2n+1)*(x − x(0))^2 * (x − x(1))^2 * ···
% * (x − x(n−1))^2 * (x − x(n))
%
% Step 1: For i = 0, 1, ..., n
% do Steps 2 and 3
%
% Step 2: Set z(2i) = x(i);
% z(2i+1) = x(i);
% Q(2i,0) = f(x(i));
% Q(2i+1,0) = f(xi);
% Q(2i+1,1) = f'(x(i)).
%
% Step 3: If i ~= 0
% Set Q(2i,1) = (Q(2i,0) − Q(2i−1,0))/(z(2i) − z(2i−1))
%
% Step 4: For i = 2, 3, ..., 2n+1
% for j = 2, 3, ..., i
% set Q(i,j) = (Q(i,j−1) − Q(i−1,j−1))/(z(i) - z)
%
% Step 5: OUTPUT (Q(0,0), Q(1,1), ..., Q(2n+1,2n+1);
% STOP

h = 0.1;
n = 2/h+1;

Q = zeros((2*n),(2*n));

for i = 1:n-1
 x(i+1) = x(i) + h;
end

for i = 1:n
 a(i) = cos(pi*(x(i).^3 + x(i)));
end

% first derivatives of f(x)
for i = 1:n
 d(i) = -1*pi*(3*x(i).^2 + 1)*sin(pi*(x(i).^3 + x(i)));

 Headley 14

end

end

This next block of code is the script for running fhermite.m.
%%
% Construct the Hermite polynomial
% Interpolating the data:
% (x(j),f(x(j)),f'(x(j)) for j = 0, ..., n
% n = (2/h)+1 for h = 0.1

h = 0.1;
n = 2/h+1;

x = zeros(n,1); % x values
a = zeros(n,1); % f(x) values
d = zeros(n,1); % derivatives at f(x) values
[Q] = fhermite(x,a,d);

z = zeros((2*n),1);
% Hermite coefficients
for i = 1:n
 z(2*i-1) = x(i);
 z(2*i) = x(i);
 Q((2*i-1),1) = a(i);
 Q((2*i),1) = a(i);
 Q((2*i),2) = d(i);

 if i ~= 1
 Q((2*i-1),2) = (Q((2*i-1),1)-Q((2*i-2),1)) / (z(2*i-1) - z(2*i-2));
 end
end

for i = 2:(2*n-1)
 for j = 2:i
 Q(i+1,j+1) = (Q(i+1,j) - Q(i,j)) / (z(i+1) - z(i+1-j));
 end
end

