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Objective: 

Considering the function 𝑓 𝑥 = cos 𝜋 𝑥! + 𝑥  on the interval 0,2  with the 
number points 𝑛 = !

!
+ 1, a free cubic spline polynomial over step size ℎ can be 

computed by using Algorithm 3.4 from Burden’s Numerical Analysis.  Choosing the 
points 𝑥! = 0, 𝑥! = ℎ, 𝑥! = 2ℎ, . . ., 𝑥!!! = 2− ℎ, 𝑥! = 2.  Given 𝑛 points, an interval in 
a vector 𝑥 = 𝑥!,… , 𝑥! , a set of corresponding constants a from function outputs 
𝑓 𝑥 = 𝑎 = 𝑎!,… ,𝑎! , the program outputs vectors with corresponding coefficients 𝑏, 𝑐, 
and 𝑑 for the spline polynomials  

𝑠 𝑥 = 𝑠! 𝑥 = 𝑎! + 𝑏! 𝑥  –   𝑥! + 𝑐! 𝑥  –   𝑥!
! + 𝑑! 𝑥  –   𝑥!

! 

with natural boundary conditions at the ends of our interval, corresponding to 
the second derivative of 𝑓 𝑥  at the end points being set to 0. 

In the second part of this program the function 𝑓 𝑥  will be interpolated with a 
Hermite polynomial.  This type of interpolation involves the use of the functions 
derivatives at the 𝑛 points. 

 

Program: Interpolating Spline Polynomial 

The script, functions, and graphs were produced in MATLAB.  The first code 
block is a function M-file is named fspline.m, then the script for which fspline.m is 
used to display five graphs that show the function 𝑓 𝑥  (blue), the spline (green), and 
the absolute error (red). The second function M-file is a function that produces a 
Hermite interpolating polynomial named fhermite.m.  The results of both M-file 
functions are then compared. 

The code for fspline.m outputs the coefficients of the spline polynomials from 𝑛 
points with an adjustable step size ℎ and the values of the function at those points by 
solving a decomposed triangular system of matrices.  From these coefficients the script 
produces piecewise cubic splines connecting the points. 

 
It is appropriate to use free boundary conditions in this case, instead of clamped 

boundary conditions because of the behavior of the function 𝑓 𝑥 = cos 𝜋 𝑥! + 𝑥 .  
This function’s quickest oscillation exists around the endpoint 𝑥   =   2, producing a 
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major source of error for the interpolating spline polynomial.  Since the first derivatives 
at the end points are not predestined and the second derivative set to 0 at the end 
points, the spline has the self-determination it needs to account for slope and concavity 
as it approaches 𝑥   =   2. 
 

The following code only shows the script for ℎ   =   1. To see the other step sizes 
use the exact same code, only changing the initial value for ℎ. The a values below are 
constants from function outputs 𝑓 𝑥! = 𝑎!, and the 𝑏, 𝑐, and 𝑑 values are the unknown 
coefficients of the interpolating spline polynomials. 
 

Below are five graphs comparing 𝑓 𝑥 = cos 𝜋 𝑥! + 𝑥  to the interpolating 
spline polynomials corresponding to the five different steps sizes h.  In each case, the 
function 𝑓 𝑥  is in blue, the interpolating spline polynomial s(x) is in green, and the 
absolute error in red.  Below each graph is the max absolute error with a corresponding 
interval for x. 
 
 

 
max absolute error: 2 with x in [0,2] 
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max absolute error: 1.858 with x in [1.5,2] 

 
max absolute error: 1.974 with x in [1.4,1.6] 
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max absolute error: 1.010 with x in [1.8,1.9] 

 

 
max absolute error: 0.2975 with x in [1.95,2] 
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Results and Error Analysis (Spline): 

 Using a uniform step size ℎ makes for easy computation but this style of step size 
is not always the best for minimizing error.  Notice the transition of error between step 
sizes.  The error calms down at the start 𝑥   =   0 but tends to increasingly isolate itself 
around 𝑥   =   2.  The increase of oscillations 𝑓 𝑥  yields about 𝑥   =   2 causes steeper 
slopes and abrupt changes in concavity. The freedom corresponding to the first 
derivative of the interpolating spline polynomial’s endpoints causes the polynomial 
trouble with maintaining a level relationship with the function but still intersecting at 
the associated 𝑛 points.  Decreasing the step size allows the behavior of the 
interpolating spline polynomial to be more level with the given functions since more 
points are used. 

 To form a bound for the error, observe Thm 3.13 from Burden’s Numerical 
Analysis,  𝑓 𝑥 − 𝑠 𝑥 = ! ! ! !

!"#
  ×  𝑚𝑎𝑥   𝑥!!!  – 𝑥!

!
 for 𝜉 ∈ [0,2] and 0   ≤   𝑗   ≤   𝑛 − 1.  

The bound using the fourth derivative is 𝑓 ! 𝜉 =   2.774758  ×  10!  at 𝑥   =   2, however this 
explosion yields no essential information about how accurate the approximations is.  Since 
most of the error for the most accurate case is in the interval [1.95,2], that implies 𝜉 
resides there.  The clamped spline polynomial has a maximum error of 3.6035 for ℎ   =   0.1 
which is not as accurate as the natural spline polynomial’s max error of 1.010 for ℎ   =   0.1. 

Table 1: Fourth Derivative of 𝑓 𝜉  Table 2: Absolute Error with corresponding 
Step Sizes 

 

 

 

 

 

 

 

 

 

𝜉 𝑓 ! 𝜉  

1.9 -1.177944 x 106 

1.95 -1.253286 x 106 

1.975 1.04521 x 106 

1.999999 2.774732 x 106 

1.9999999 2.774755 x 106 

1.99999999 2.774758 x 106 

2 2.774758 x 106 

ℎ 𝑥 Interval Absolute Error 

1 [0,2] 2 

0.5 [1.5,2] 1.858 

0.2 [1.4,1.6] 1.974 

0.1 [1.8,1.9] 1.010 

0.05 [1.95,2] 0.2975 
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To obtain an idea of a bound for the estimated error observe that the behavior of the 
interpolating spline polynomial between 𝑦   =   −1 and 𝑦   =   1 compared to the given 
functions.  Notice the polynomial always resides between them.  This implies that the 
absolute error between the given function and the interpolating spline polynomial 
cannot exceed 2 in this interval with the given step sizes.  Using ℎ = 1 as the minimal 
case producing the most error. 

Reference the graph below for the following.  Observing that most of the error 
occurs closer to 𝑥   =   2, it would be appropriate to chose a non-uniform step size to 
obtain a better approximation.  Notice that a cubic polynomial could at best cover one 
full oscillation due to its containing at most three distinct roots and looks very similar 
to – cos 𝑥  for 𝑥   =    [–𝜋/2, 3𝜋/2].   By observing the graphs above closely, notice the 
greatest portion of the error exists in the interval [1.5,2].  This implies that the more 
oscillations that an interpolating spline polynomial covers the worse the approximation 
for cos(𝑥) will become.  To apply this concept to choosing five points, it is easier to 
consider h in respect to 𝑦! = 𝑥!! + 𝑥! instead of 𝑥 adaptively placing most of the points 
in the high-erred interval [1.5, 2].  This is obvious because for 𝑥   >   1, 𝑦 increases 
considerably faster than 𝑥, causing more oscillations to occur in this interval. Choosing 
five points such that cos 𝜋𝑦! = cos !!

!
. This implies that 𝑦! =

!"
!
= !

!
 since 𝑦! = 10. 

Therefore the rest of the y values should be 𝑦! = 1,𝑦! =
!
!
,𝑦! = 5,𝑦! =

!"
!
,𝑦! = 10.  By 

approximating the 𝑥! values 𝑥! = 0, 𝑥! = 1.11, 𝑥! = 1.51, 𝑥! = 1.79, 𝑥! = 2. 
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Program: Interpolating Hermite Polynomial: 

 Using Algorithm 3.3 from Burden’s Numerical Analysis an interpolating Hermite 
polynomial can be formed and then compared to the interpolating spline polynomial.  
After calculating the first derivatives of 𝑓 𝑥  at each 𝑥 value, the interpolating Hermite 
polynomial can be constructed. The following code yields 42 coefficients for a 41 degree 
approximating polynomial. 

 
Using the similar plot commands to for spline functions, the following graph compares 
Hermite (yellow) to spline (blue).  
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Results: Hermite vs. Spline: 

The purpose of this programming assignment was to observe the end behavior for 
different types of interpolation.  Above explains the error analysis for the interpolating 
natural spline polynomial.  For ℎ   =   0.1 the Hermite polynomial produces a fairly good 
estimate as long as the endpoints are left out because it explodes to values around 100 
when really close to them, within 10!! distance of it.  The graph does not show it is 
because the endpoints were removed to observe the general behavior from (0,2).  This 
occurrence is not surprising due to a Hermite polynomial because the use of first 
derivatives, similar to interpolating clamped spline polynomials behavior at the 
endpoints. 

 

Conclusion: 

 In the end, each case generated a high error on the right sides of the intervals.  
The max error values for ℎ   =   1, ℎ   =   0.5, and ℎ   =   0.2 step sizes all had similar max 
absolute errors, but each smaller iteration of h produces an interpolating natural spline 
polynomial more flush with the given function 𝑓(𝑥).  The smaller the step size ℎ, the 
bigger 𝑛, the more points, the more control the spline has on the behavior of these 
oscillations because they become increasingly more frequent as 𝑥 increases. This makes 
it difficult to develop a way to choose points, the step sizes would not be equal.  A good 
method would be to guarantee the maximums and minimums interpolating polynomial 
lines up with the given function’s maximums and minimums.  Or cleverly distribute the 
points according to each oscillation, as explained on page 9 of this report. 
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Analysis 
 

function [ b,c,d ] = fspline( n,x,a ) 
% fspline To construct the cubic spline interpolant S for the function f, 
%         defined at the numbers x(0) < x(1) < ··· < x(n), 
%         satisfying S''(x(0)) = S''(x(n)) = 0 
% This is a direct implimentation of Algorithm 3.4 from Burden's % Numerical Analysis 
% 
%   INPUT n; 
%                x(1), ..., x(n); 
%                a(0) = f(x(0)), a(1) = f(x(1)), ..., a(n) = f(x(n)) 
%    
%   OUTPUT a(j), b(j), c(j), d(j) for j = 0, 1, ..., n-1 
%    
%   Note: S(x) = S(j)(x) 
%   S(j)(x) = a(j) + b(j)(x - x(j)) + c(j)(x - x(j))^2 + d(j)(x - x(j))^3  
%   for x(j) < x < x(j+1) 
%    
% 
%   Step 1: For i = 0, 1, ..., n-1 
%               set h(i) = x(i+1) - x(i) 
% 
%   Step 2: For i = 1, 2, ..., n-1 
%               set A(i) = 3/h(i)(a(i+1) - a(i)) - 3/h(i-1)(a(i) - a(i-1)) 
% 
%   Step 3: Set l(0) = 1; 
%               (Steps 3, 4, 5, and part of Step 6 
%               solve a tridiagonal linear system 
%               using a method described in Algorithm 6.7.) 
%           Set u(0) = 0; 
%           Set z(0) = 0; 
%  
%   Step 4: For i = 1, 2, ..., n-1 
%               set l(i) = 2(x(i+1) - x(i-1)) - h(i-1) u(i-1); 
%                   u(i) = h(i)/l(i); 
%                   z(i) = (A(i) - h(i-1) z(i-1))/l(i); 
%    
%   Step 5: Set l(n) = 1; 
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%               z(n) = 0; 
%               c(n) = 0; 
% 
%   Step 6: For j = n-1, n-2, ..., 0 
%               set c(j) = z(j) - u(j) c(j+1); 
%                   b(j) = (a(j+1) - a(j))/h(j) - h(j)(c(j+1) + 2c(j))/3; 
%                   d(j) = (c(j+1) - c(j))/(3h(j)); 
%   Step 7: OUTPUT (a(j),b(j),c(j),d(j) for j = 0, 1, ..., n - 1); 
%           STOP 
 
hi = zeros(1,n); 
 
for i = 1:n-1 
    hi(i) = x(i+1) - x(i); 
end 
 
A = zeros(1,n-1); 
 
for i = 2:n-1 
    A(i) = (3/hi(i)) * (a(i+1) - a(i)) - (3/hi(i-1)) * (a(i) - a(i-1)); 
end 
 
l = zeros(1,n-1); 
l(1) = 1; 
 
u = zeros(1,n-1); 
u(1) = 0; 
 
z = zeros(1,n-1); 
z(1) = 0; 
z(n) = 0; 
 
for i = 2:n-1 
    l(i) = 2*(x(i+1) - x(i-1)) - hi(i-1) * u(i-1); 
    u(i) = hi(i)/l(i); 
    z(i) = (A(i) - hi(i-1) * z(i-1))/l(i); 
end 
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b = zeros(1,n-1); 
c = zeros(1,n); 
d = zeros(1,n-1); 
 
c(n) = 0; 
 
for j = n-1:-1:1 
    c(j) = z(j) - u(j) * c(j+1); 
    b(j) = (a(j+1) - a(j))/hi(j) - hi(j) * (c(j+1) + 2*c(j))/3; 
    d(j) = (c(j+1) - c(j))/(3*hi(j)); 
end 
 
c = c(1:n-1); 
end 
 
 
%% Script 
% change h for corresponding step sizes h = (1, 0.5, 0.2, 0.1, 0.05) 
h = 1;  % this is the only line that changes in the script! 
 
n = (2/h) + 1; 
 
x = zeros(1,n); 
x(1) = 0; 
x(n) = 2; 
 
for j = 2:n-1 
    x(j) = x(j-1) + h; 
end 
     
% Consider the function  
% f = cos(pi * (x.^3 + x)); 
% on the interval 0 ≤ x ≤ 2 
    
a = zeros(1,n); 
for j = 1:n 
    a(j) = cos(pi*(x(j).^3 + x(j))); 
end 
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% natural cubic spline function 
[ b,c,d ] = fspline( n,x,a ); 
 
for i = 1:n-1 
    % spline polynomials on respective interval 
    X(i,:) = linspace(x(i),x(i+1)); 
end 
 
figure 
hold on 
 
title(['Spline Approximation for h = ', num2str(h)]) 
 
for i = 1:n-1 
    % plotting function (BLUE) 
    plot(X(i,:), cos(pi*(X(i,:).^3 + X(i,:))), 'b'); 
     
    % plotting spline approximation (GREEN) 
    plot(X(i,:), a(i) + b(i).*(X(i,:) - x(i)) + c(i).*(X(i,:) - x(i)).^2 + d(i).*(X(i,:) - 
x(i)).^3, 'g'); 
 
    % plotting error (RED) 
    plot(X(i,:), abs(cos(pi*(X(i,:).^3 + X(i,:))) - (a(i) + b(i).*(X(i,:) - x(i)) + c(i).*(X(i,:) 
- x(i)).^2 + d(i).*(X(i,:) - x(i)).^3)), 'r'); 
end 
 
 
function [ Q ] = fhermite( x,a,d ) 
% fhermite Summary of this function goes here 
%   INPUT numbers x(0),x(1), ..., x(n); 
%       values  f(x(0)), ...,f(x(n)) 
%               f'(x(0)), ..., f'(x(n)) 
% 
%    OUTPUT numbers Q(0,0), Q(1,1), ..., Q(2n+1,2n+1)  
%           where H(x) = Q(0,0) + Q(1,1)(x − x(0)) + Q(2,2)(x − x(0))^2  
%                      + Q(3,3)*(x − x(0))^2 * (x − x(1)) 
%                      + Q(4,4)*(x−x(0))^2 * (x−x(1))2 + ··· 
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%                      + Q(2n+1,2n+1)*(x − x(0))^2 * (x − x(1))^2 * ··· 
%                      * (x − x(n−1))^2 * (x − x(n)) 
% 
%    Step 1: For i = 0, 1, ..., n 
%                do Steps 2 and 3 
% 
%    Step 2: Set z(2i) = x(i); 
%                z(2i+1) = x(i); 
%                Q(2i,0) = f(x(i)); 
%                Q(2i+1,0) = f(xi); 
%                Q(2i+1,1) = f'(x(i)).  
% 
%    Step 3: If i ~= 0 
%            Set Q(2i,1) = (Q(2i,0) − Q(2i−1,0))/(z(2i) − z(2i−1)) 
% 
%    Step 4: For i = 2, 3, ..., 2n+1 
%                for j = 2, 3, ..., i 
%                    set Q(i,j) = (Q(i,j−1) − Q(i−1,j−1))/(z(i) - z) 
% 
%    Step 5: OUTPUT (Q(0,0), Q(1,1), ..., Q(2n+1,2n+1); 
%                STOP 
 
h = 0.1; 
n = 2/h+1; 
 
Q = zeros((2*n),(2*n)); 
  
for i = 1:n-1 
   x(i+1) = x(i) + h; 
end 
 
for i = 1:n 
   a(i) = cos(pi*(x(i).^3 + x(i)));  
end 
  
% first derivatives of f(x) 
for i = 1:n 
   d(i) = -1*pi*(3*x(i).^2 + 1)*sin(pi*(x(i).^3 + x(i)));  
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end 
 
end 
 
This next block of code is the script for running fhermite.m.   
%% 
% Construct the Hermite polynomial  
% Interpolating the data: 
% (x(j),f(x(j)),f'(x(j)) for j = 0, ..., n 
%  n = (2/h)+1 for h = 0.1 
 
h = 0.1; 
n = 2/h+1; 
 
x = zeros(n,1); % x values 
a = zeros(n,1); % f(x) values 
d = zeros(n,1); % derivatives at f(x) values 
[ Q ] = fhermite( x,a,d ); 
 
z = zeros((2*n),1); 
% Hermite coefficients 
for i = 1:n 
    z(2*i-1) = x(i); 
    z(2*i) = x(i); 
    Q((2*i-1),1) = a(i); 
    Q((2*i),1) = a(i); 
    Q((2*i),2) = d(i); 
     
    if i ~= 1 
        Q((2*i-1),2) = (Q((2*i-1),1)-Q((2*i-2),1)) / (z(2*i-1) - z(2*i-2)); 
    end 
end 
  
for i = 2:(2*n-1) 
    for j = 2:i 
       Q(i+1,j+1) = (Q(i+1,j) - Q(i,j)) / (z(i+1) - z(i+1-j));  
    end 
end 


