The Tacoma Narrows Bridge
By: Adam Headley 998017147 27 May 2015

Abstract

This project is an example of experimental mathematics. The equations are too

difficult to derive closed-form solutions, and even too difficult to prove
qualitative results. Equipped with reliable ODE solvers, numerical trajectories
for various parameter settings can illustrate the types of phenomena available to
this model. Differential equation models can predict behavior and shed light on
mechanisms in scientific and engineering problems. These problems and the

following activities are borrowed from Sauer.

Introduction

McKenna and Tauma recently proposed a mathematical model that attempts to

reproduce the Tacoma Narrows Bridge conditions and breakdown. The goal of this
model was to explain how torsional (twisting) oscillations can be magnified by strictly

vertical forces.

Consider a roadway of width 2l hanging between two suspended cables. For this
model the bridges links dimension I will be ignored, only taking into consideration a
two-dimensional slice of the bridge. The roadway hangs at a certain equilibrium height
at rest due to gravity; let y denotes the distance from the roadway center of mass to its
equilibrium position and angle 6 of the roadway with the horizontal.

Figure 1: (Left) Cross-Section of Modeled Tacoma Narrows Bridge

8~
y
3k
oL
OF----- e 1+
! I I 1 I I
-3 -2 -1 1 2 3
‘Isinu -1
ok
8% 0 8 T

Figure 2: (Right) Exponential Hooke’s Law curve f(y) = g(eay -1).

Headley 2

Hooke’s Law postulates a linear response, implying that the restoring force
applied by the cables will be proportional to the deviation from equilibrium.

Exponential Hooke’s Law: f(y) = S(eay —1). Let 0 be the angle the roadway makes

with the horizontal. There are two suspension cables, deviates y — Isinf and y + [sinf
from equilibrium, respectively. Given a viscous damping term assume that it is
proportional to the velocity. Using Newton’s lawF = ma and denoting Hooke’s constant
K, the equations of motion for y and 6 are as follows:

"= _dy' [K(Ising)+ +z'9)]
y"'= —dy'—|—(y—lsin —(+1lsin
3 cosf

0" = —dy+ l

[5(~Ising) - = +lsin9)]
m Y m Y

Hooke’s Law is designed for springs, where the restoring force is more or less equal
whether the springs are compressed or stretched. McKenna and Tauma hypothesize
that the cables pull back with more force when stretched than they push back with
when compressed. (Think of a string as an example.) The linear Hooke’s Law restoring
force f(y) = Ky is replaced with a nonlinear force f(y) = S(eay —1). Both functions
have the same slope K at y = 0; but for the nonlinear force, a positive y (stretched

cable) causes a stronger restoring force than the corresponding negative y (slackened
cable). Making this replacement in the preceding equation yields:

K) .

"= _dy — — ea(y—lsmB) —14 ea(y+lsm9) -1
y y———| |
9" = —do’ + 3 COSQi [ea(y—lsinH) _ ea(y+lsin9)]

ma

!

The state y =y’ =6 = 0’ = 0 is rests at equilibrium. Turning on the wind and
add the forcing term 0.2Wsin(wt) to the right-hand side of the y equation, where W is
the wind speed in km/hr. This adds a strictly vertical oscillation to the bridge.

Useful estimates for the physical constants can be made. The mass of a one-foot
length of roadway was about 2500 kg, and the spring constant K has been estimate at
1000 Newtons. The roadway was about 12 meters wide. For this simulation, the
damping coefficient was set at d = 0.01, and the Hooke’s nonlinearity coefficient a =
0.2. An observer counted 38 vertical oscillations of the bridge in one minute shortly

before the collapse which implies that w = 2m %. These coefficients are only guesses,

but they suffice to show ranges of motion that tend to match photographic evidence of
the bridge’s final oscillations. MATLAB code that runs the model is in the Appendix.

Headley 3

Running the MATLAB code tacomal.m with wind speed W = 80 km/hr and
initial conditions y =y’ =6’ =0, § = 1072. In the torsional dimension, the
bridge is stable if small disturbances in 8 die out and unstable if small
disturbances grow far beyond the original size. Observing the script.m (%%
SCRIPT 1. block), watching the model bridge oscillate, it takes a while however,
the small disturbances in 8 grow far beyond the original size for W = 80 km/hr.

Replacing the Trapeziod Method with the Runge-Kutta Method of Order 4

(trapstep.m changes to rk4step.m in tacoma2.m) and running the same
initial conditions as in tacomal.m, wind speed W = 80 km/hr and initial
conditions y =y’ =0’ =0, § = 1072. The following figures below describe the y
over time and 6 over time. In the torsional dimension, the bridge is stable if
small disturbances in 8 die out and unstable if small disturbances grow far
beyond the original size. Reference the script.m (%% SCRIPT 2. block).

Graph 1: Bridge’s Center of Mass’ Displacement from Equillibrium

T T T T T T T T 1

4 —

-6 .

1

1 1 1 1 1 | 1 1
0 100 200 300 400 500 600 700 800 900 1000
t

Headley 4

Graph 2: Bridge’s Torsional Displacement from Equillibrium

T T I T T T T T 1

|

1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
t

In Graph 1, the bridge’s center of mass’ displacement starts oscillating with large
amplitude at a low frequency and then oscillates with a smaller amplitude at a
higher frequency. The vertical oscillation is extreme in the beginning but then
just before t = 300 starts to shorten and become more frequent. In Graph 2, the
bridge’s torsional displacement starts small and then grows extremely large just
after t = 100 reaching its peak amplitude just before t = 300. There seems to be
a correlation here. Some of the energy from the vertical forces get transferred to
the torsional forces changing 8 more drastically. Under close observation one can
spot a resonance in the bridge’s oscillations of both graphs, in the darker shaded
region.

The system is torsionally stable for W = 50 km/hr. The script.m (%% SCRIPT

3. Block) finds the magnification factor for initial conditions y =y’ =68’ =0,

Headley 5

0(0) = 1073 by using MATLAB code tacoma3.m which takes in rk4step3.m
which takes in ydot3.m. The magnification factor is expressed as

3 max(@ (t))

—6(0)
the greatest angle divided by initial angle. For the specified initial conditions,
the consistency of the magnification factors found from the initial angles are
shown below:

Table 1: Consistency of the Magnification Factor for Initial Angles
Initial Angle 0 Magnification Factor = Consistent?

1073 to 1016 [19.1496572583,19.6091562004] Yes

1077 9.13686692 No

10718 202.9913077372 No

10719 356.2421906764 No

10729 and on 1 Yes

As can be see in Table 1, the magnification factor is not approximately consistent
for all values of 8(0) = 1073,1074,1075, ..., specifically 8(0) = 10~17,10718,1071°.
0(0) = 10720 is very small to have such a nice looking number, this is most likely
from truncation error while using 6(0)

To find a minimum wind speed, W, with 8(0) = 1073 such that the

magnification factor of 100 or more is produced, ydot4.m and rk4step4.m were
created to take in one more variable, W, and perform the same as ydot3.m and
rkdstep3.m otherwise. The script.m (%% SCRIPT 4. Block) finds the
magnification factor for small initial angle, 8(0) = 1073, using MATLAB code
tacoma4.m. The loop in the script runs through values of W stepping by size s

and stops when magnification factor is 100 or more.

Table 2: Tests Ran to Determine a Convergent Wind Speed

Run | Initial Wind Speed | Stepsize | Wind Speed | Magnification Factor

1™ 50 1 59 102.2220310286
2" |58 0.1 59.0 102.2220310286
3 58.9 0.01 58.95 100.1476473096
4t 58.94 0.001 58.947 100.0247617444
5 58.946 0.0001 58.9464 100.0002059828

Headley 6

The wind speed values are converging to W = 58.9463 km/hr as the
magnification factor consistently converges to MF = 100.

Implementing the Secant Method, the minimum wind speed in part D is

computed to within 0.5x1072 in the script.m (%% SCRIPT 5. Block).
Calculates magnification factors using tacoma4.m for 2 different wind speeds
and combines them using the Secant Method to create a new wind speed using
MATLAB code tacoma5.m. The Secant Method approximates the derivative of
the magnification factor with respect to the wind speed multiplies it by the
magnification factor of the second point and then subtracts it from the second
wind speed, calculating a new wind speed:
 ME,(W, — Wy)

MF, — MF,
Where W5 converges to the minimum wind speed within the given tolerance,
58.9463949662];—1;1 ~ 58.9464 l;—r: after 9 iterations of the Secant Method.

Wy = W,

When trying larger values of W, not all extremely small initial angles (1073)

eventually grow to catastrophic size. The bridge breaks when the magnification
factor is greater than 100. This occurs for wind speeds, W, approximately
greater than 58.9464 km/hr as shown in part E. The script.m (%% SCRIPT 6.
Block) uses tacomad4.m to calculate the magnification factor for larger values of
W. However, wind speed anomalies that allow the bridge to stay in good
condition occur in [78.8,79.6] by increments of .1. These anomalies are caused by
the damping forces dissipating the energy that is contributed by a resonant
excitation to the system at its natural frequency.

Headley 7

Conclusion

If a sinusoidal driving force is applied at the resonant frequency of the oscillator,
then its motion will build up in amplitude to the point where it is limited by the
damping forces on the system. If the damping forces are small, a resonant
system can build up to amplitudes large enough to be destructive to the system.
Since a resonant excitation will continue to contribute energy to the system at its
natural frequency, the amplitude of oscillation will continue to grow until the
damping forces dissipate that energy, or until something destructive happens to
the system. (Driven Oscillator & Resonant Excitation, Hyper Physics)

McKenna suggests that perhaps the replacement of the linear small angle
approximation for the motion of the bridge by the proper trigonometric functions
could provide a sufficient non-linearity to cause the bridge to collapse. By
calculating the response of such a non-linear oscillator with a force containing
constant frequency and amplitude, it can be argued that the non-linearities of the
trigonometric functions alone can allow for the same kind of bimodal response,
with large amplitude oscillations when the linear case may not. Although these
models provide a more complete analysis of motion, this analysis ignores the
cause of the driving forces entirely. The sinusoidal forces applied on the bridge
are assumed to have a constant period and amplitude to drive the resonance.
Without understanding the origin and fluctuation of these forces, introducing the
non-linearities gains an incomplete insight into the cause of the collapse of the
bridge. (Tacoma Bridge Failure, Green & Unruh, University of British Columbia)

Headley 8

Appendix
(12 functions, 6 scripts)

SCRIPT (with 6 blocks)

1 %% SCRIPT 1.

2

3 % Running tacoma.m with wind speed W
4 % initial conditions y = y' = theta’
5

6 % The bridge is stable in the torsional dimension

7 % if small disturbances in theta die out

8

9 % The bridge is unstable in the torsional dimension

10 % if the small disturbances grow far beyond the originial size
11

80 km/hr
0, theta = 0.001.

12 a = 0;

13 b = 1000;
14

15 vyl = 0;
16 y2 = 0;

17 thetal = 107-2;

18 theta2 = 9;

19

20 tacomal([a b],[yl y2 thetal theta2],.04,3);

21

22 % For W = 80,

23 % The small disturbances in theta grow far beyond the original

size.

24 % Therefore, the bridge is unstable and breaks.

25

26

27 Y e e %

28 %% SCRIPT 2.

29

30 % Replaces the trapeziod method with the Runge-Kutta Method of
Order 4

31 % trapstep.m -> rkdstep.m
32 % Plots y(t) and theta(t)
33

34 a = 0;

35
36
37
38
39
49
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74

75
76
77
78

b = 1000;
yl = 0;

y2 = 0;

thetal = 107-2;
theta2 = 9;

Headley 9

[time,z1,z3] = tacoma2([a b],[yl y2 thetal theta2],.04,3);

%y vs. time

figure
plot(time,z1,'b")

hold on

legend('y(t)")

zlmin = min(z1);

zlmax = max(zl);
axis([a b zlmin zlmax])
xlabel('t")

ylabel('y")

% theta vs. time
figure
plot(time,z3,'r")

hold on

legend('y(t)")

z3min = min(z3);

z3max = max(z3);
axis([a b z3min z3max])
xlabel('t")
ylabel('theta")

%% SCRIPT 3.

format long;

% The system is torsionally stable for W = 50 km/hr.

% Finds magnification factor for small initial angle, theta(@) =

10"-3
% Magnification Factor =
theta(0)

a
b

9;
1000;

Maximum Angle theta(t) / Initial Angle

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98

99

100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121

Headley 10

yl = 0;
y2 = 0;
theta2 = 9;
tend = 23;

MF2 = zeros(tend-2,1);

% loop
for t = 3:tend
thetal = 10-t;

[time,z1,z3] = tacoma3([a b],[yl y2 thetal theta2],.04,3);
close

% Magnification Factor

MF2(t-2) = max(abs(z3))/z3(1);

fprintf('Magnification Factor with starting theta = 107-%d is
%.10f \n',t,MF2(t-2))

end

% The Magnification Factor is approximately consistent @ MF = 19
(approx.)

% for initial theta from 107-3 to 107-16.

% The Magnification Factor is approximately consistent @ MF = 1

% for initial theta from 107-20 on.

Y e e %

%% SCRIPT 4.

% Finding minimum W with theta(@) = 107(-3)

% producing a magnification factor of 100 or more

% ydot4 takes in one more variable, W, and performs the same as
ydot

a = 0;

b = 1000;
yl = o;

y2 = 0;

thetal = 107-3;
theta2 = 9;

% loop looks at values of W stepping by size s
% stops when MF is 100 or more

122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153
154
155
156
157
158
159
160
161
162
163
164
165

Headley 11

W = 58.9; % starting value
s = .001; % step size of W
MF = 1; % Initialize MF to run while loop

while MF < 100
[~,~,z3]=tacomad4([a b],[yl y2 thetal theta2],.04,3,W);
close
MF = max(abs(z3))/z3(1);
if MF < 100
W=W+ s;
end
end
fprintf('For W = %.10f, the Magnification Factor is %.10f < 100
\n', W, MF)

% Tests
%

5 First run: W = 50, s =1 -> W =59, -

MF = 102.2220310286
% Second run: W = 58, s =0.1 -> W = 59.0,

MF = 102.2220310286
% Third run: W = 58.9, s = 0.01 -> W = 58.95,

MF = 100.1476473096
% Fourth run: W = 58.94, s =0.001 -> W = 58.947,

MF = 100.0247617444
% Fifth run: W = 58.946, s = 0.0001 -> W = 58.9464,

MF = 100.0002059828

%% SCRIPT 5.

% Method for calculating minimum windspeed to within ©.5x10"-3
km/hr.

W1 80;
W2 = 50;

% Secant Method
[W3,iterations] = tacoma5(W1l,W2);

% W3 converges to 58.946394966 km/hr in ## iterations.

%% SCRIPT 6.

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

186
187

188
189
190
191

192
193
194

Headley 12

When trying larger values of W,
not all extremely small initial angles (10”-3) eventually grow
to catastrophic size.

3R 3« X

a = 0;
b = 1000;
yl = 0;
y2 = 0;
thetal = 107-3;
theta2 = 9;
s = .2; % step size of W
MF = 1; % Initialize MF to run while loop
for W = 50:5:150
[~,~,2z3] = tacomad4([a b],[yl y2 thetal theta2],.04,3,W);
close
MF = max(abs(z3))/z3(1);
if MF < 100

fprintf('Good Condition, For W = %.1f, the Magnification
Factor is %.10f \n', W, MF)
else
fprintf('Broke Condition, For W = %.1f, the Magnification
Factor is %.10f \n', W, MF)
end
end

% For an initial he bridge breaks when the Magnification Factor
is greater than 100

This occurs for wind speeds, W, greater than 58.9464 km/hr
Wind speed anomalies that allow the bridge to stay in

good condition occur in [78.6,79.8]

by increments of .2. Because the frequency

3R 3R X

Headley 13

TACOMA#.m

195 function tacomal(inter,ic,h,p)

196 %Program 6.6 Animation program for bridge using IVP solver
197

198 %Inputs: int = [a b] time interval,

199 % ic = [y(1,1) y(1,2) y(1,3) y(1,4)],

200 % h = stepsize

201 % p = steps per point plotted

202

203 %Calls a one-step method: trapstep.m

204

205 %Example usage: tacoma([© 1000],[1 © ©0.001 @], .04,3)
206

207 % clear figure window

208 clf

209

210 % plot n points

211 a = inter(1);

212 b = inter(2);

213 n = ceil((b-a)/(h*p));

214

215 % Initial Conditions

216 y(1,:) = ic;

217 t(1) = a;

218 1len = 6;

219 set(gca, 'XLim',[-8 8],'YLim',[-8 8],

220 'XTick',[-8 @ 8],'YTick',[-8 @ 8],

221 'Drawmode’, 'fast', 'Visible','on', "NextPlot', 'add');
222

223 % initialize broken criterion

224 broke = 9;

225

226 tic

227

228 % clear screen

229 cla;

230

231 % make aspect ratio 1-1

232 axis square

233 road = line('color','b', 'LineStyle','-", 'LineWidth',5,...
234 'erase', 'xor', 'xdata',[], 'ydata',[]);

235 lbroke = line('color','r','LineStyle','-",'LineWidth',5,...
236 'erase', 'xor', 'xdata',[], 'ydata',[1]);

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

276

277
278
279
280

Headley 14

rbroke = line('color','r','LineStyle','-",'LineWidth',5,...
'erase', 'xor', 'xdata’',[], 'ydata',[1]);
lcable = line('color','k','LineStyle','-",'LineWidth',1,...
'erase', 'xor', 'xdata',[], 'ydata',[]);
rcable = line('color','k','LineStyle','-", 'LineWidth',1,...
'erase', 'xor', 'xdata',[], 'ydata',[1]);
Y = figure;
T = figure;
for k = 1:n
for i = 1:p
t(i+1l) = t(i)+h;
% 1 step method
y(i+1,:) = trapstep(t(i),y(i,:),h);
time(k) = t(i);
end
y(1,:) = y(p+l,:);

t(1) = ;(P+1);
z1(k) = y(1,1);
z3(k) = y(1,3);

C
S

len*cos(y(1,3));
len*sin(y(1,3));

% Magnification Factor
MF = max(z3)/z3(1);

% Breaking the bridge
if MF > 100

broke = 1;
end

if broke == 1
set(road, 'xdata',[-c c],"'ydata"',[@ @])

set(lbroke, 'xdata',[-c -c],'ydata',[-s-y(1,1) s-y(1,1)-

len/2])

set(rbroke, 'xdata',[c c],"'ydata",[s-y(1,1) s-y(1,1)-

len/2])

else

set(road, 'xdata',[-c c],'ydata"',[-s-y(1,1) s-y(1,1)])

end

set(lcable, 'xdata',[-c -c],'ydata',[-s-y(1,1) 8])

281
282
283
284
285
286
287
288
289
290
291
292
293

OWoONOOUVID WN R

end
toc

end

Headley 15

set(rcable, 'xdata',[c c],'ydata"',[s-y(1,1) 8])
drawnow; pause(h)

% Graph y(t) and theta(t)
figure(Y);
plot(time,z1,'b")
figure(T);
plot(time,z3,'r")

function [time,z1,z3] = tacoma2(inter,ic,h,p)
%Program 6.6 Animation program for bridge using IVP solver

%Inputs: int = [a b] time interval,

%
%
%

ic = [y(1,1) y(1,2) y(1,3) y(1,4)],
h = stepsize
p = steps per point plotted

%#Calls a one-step method: rk4step.m

%Example usage: tacoma([0 1000],[1 © 0.001 @], .04,3)

% clear figure window

clf

R

> C o
I

plot n points

inter(1);
inter(2);
ceil((b-a)/(h*p));

% Initial Conditions

y(1,

1) = ic;

t(1) = a;

len

tic
for

:6;

k = 1:n

for i = 1:p
t(i+1) = t(i)+h;

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

OLWCoONOOUTE WN R

=
(W)

NNMNMNNNMNNNNNRRPRRPRRPRPRRERRRR
ONOUBNWNROOLOONOONULDNWNR

end
toc

end

function
%Program

%Inputs:

%
%
%

%Calls a

%Example

end

y(1,

Headley 16

% 1 step method
y(i+1J :) = r‘k45tep(t(i),vy(i) :)Jh);

% time vector for plots

time(k) = t(i);

2) = y(p+l,0);

t(1) = ;(P+1);
z1(k) = y(1,1);
z3(k) = y(1,3);

[time,z1,z3] = tacoma3(inter,ic,h,p)
6.6 Animation program for bridge using IVP solver

int = [a b] time interval,

ic = [y(1,1) y(1,2) y(1,3) y(1,4)],
h = stepsize

p = steps per point plotted

one-step method: rk4step.m

usage: tacoma([© 1000],[1 © ©.001 0],.04,3)

% clear figure window

clf

R

S5 O w

%

len = 6;

plot n points
inter(1);
inter(2);
ceil((b-a)/(h*p));

Initial Conditions
y(1,:) = ic;
t(1) = a;

tic
for k = 1:n

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

OLoOoNOULTE, WN R

end
toc

end

function
%Program

%Inputs:

%
%
%

%Calls a

%Example

for i = 1:p

end

y(1,
t(1)
z1(k)
z3(k)

t(i+1) = t(i)+h;

% 1 step method
y(i+1,:) = rkdstep3(t(i),y(i,

% time vector for plots
time(k) = t(i);

) = y(p+l,:);
= t(p+l);
v(1,1);
v(1,3);

[time,z1,z3] = tacomad4(inter,ic,h,p,W)

2),h);

Headley 17

6.6 Animation program for bridge using IVP solver

int = [a b] time interval,

ic = [y(1,1) y(1,2) y(1,3) y(1,4)],

h = stepsize
p = steps per point plotted

one-step method: trapstep.m or rk4.m

usage: tacoma([© 1000],[1 © ©.001 0], .04,3)

% clear figure window

clf

R

S5 ©C w

%

len = 6;

plot n points
inter(1);
inter(2);
ceil((b-a)/(h*p));

Initial Conditions
y(1,:) = ic;
t(1) = a;

26

Ui

Headley 18

for k = 1:n
for i = 1:p
t(i+1) = t(i)+h;

% 1 step method
y(i+l,:) = rkastep4(t(i),y(i,:),h,W);

% time vector for plots
time(k) = t(i);
end

y(1,:) = y(p+l,:);

t(1) = t(p+1);

z1(k) = y(1,1);

z3(k) = y(1,3);
end

end
function [W,iterations] = tacoma5(W1,W2)

%tacoma5 Calculates magnification factors using tacoma4.m
% for 2 different wind speeds.

% Combines them using the Secant Method to create a new wind

speed.

% Secant Method computes the derivative of the magnification

factor
% with respect to the wind speed
% These wind speeds converge

% Initial Conditions
inter = [0 1000];

ic = [0 0 @0.001 0];

h = .04;

p=3;

% Comparing Iterations
TOL = 100;

iteration = 0;

while TOL > ©.5%10"(-3)

[~,~,232] = tacomad(inter,ic,h,p,W2);
[~,~,2z31] = tacomad4(inter,ic,h,p,Wl);
close

25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Headley 19

MF2
MF1

100 - max(z32)/z32(1);
100 - max(z31)/z31(1);

% Secant Method

W3 = W2 - ((MF2)*(W2-W1))/(MF2-MF1);

fprintf('Secant Method produces new wind speed, W = %.10f
\n',W3)

% Update Tolerance
TOL = max(abs(W3-W1),abs(W3-W2));
if TOL <= @.5%10"(-3)
W = W3;
iterations = iteration;
return
end

W1=W2;
W2=W3;

iteration = iteration + 1;
end

end

TRAPSTEP.m

ooONOUVTh WN PR

function y = trapstep(t,x,h)
% one step of the Trapezoid Method

z1 = ydot(t,x);

g = X + h*zl;

z2 = ydot(t+h,g);

y = X + h*(z1+z2)/2;
end

Headley 20

RK4STEP#.m

1 function y = rkastep(t,w,h)

2 %»rkdstep: 1 step of the Runge-Kutta's Method of Order 4
3

4 K1 = ydot(t,w);

5 K2 = ydot(t+h/2,w+h*K1/2);

6 K3 = ydot(t+h/2,w+h*K2/2);

7 K4 = ydot(t+h,w+h*K3);

8 y = w+h*(K142*K2+2*K3+K4)/6;

9 end

1 function y = rkadstep3(t,w,h)

2 %»rkdstep3: 1 step of the Runge-Kutta's Method of Order 4
3

4 K1 = ydot3(t,w);

5 K2 = ydot3(t+h/2,w+h*K1/2);

6 K3 = ydot3(t+h/2,w+h*K2/2);

7 K4 = ydot3(t+h,w+h*K3);

8 y = w+h*(K142*K2+2*K3+K4)/6;

9 end

1 function y = rkadstepd(t,w,h,W)

2 %rk4: 1 step of the Runge-Kutta's Method of Order 4
3

4 K1 = ydotd(t,w,W);

5 K2 = ydot4(t+h/2,w+h*K1/2,W);

6 K3 = ydot4(t+h/2,w+h*K2/2,W);

7 K4 = ydotd(t+h,w+h*K3,W);

8 y = w+h*(K142*K2+2*K3+K4)/6;

9 end

Headley 21

YDOT#.m

1 function ydot = ydot(t,y)

2 %ydot Initial Conditions

3

4 % damping coefficient

5 d = 0.01;

6

7 len = 6;

8 a =0.2;

9 W = 80;

10 omega = 2*pi*38/60;

11

12 % e~(a(y-1*sin(theta)))

13 el = exp(a*(y(1)-len*sin(y(3)))):

14

15 % e~(a(y+l*sin(theta)))

16 e2 = exp(a*(y(1)+len*sin(y(3)))):

17

18 %y’

19 ydot(1) = y(2);

20

21 % y'' = -d*¥y' - (K/m)*(e~(a(y-1*sin(theta)))-
er(a(y+l*sin(theta))))-2)/a

22 % + (forcing term) % adds a strictly vertical oscillation
to bridge

23 ydot(2) = -d*y(2) - 0.4%(el+e2-2)/a + 0.2*W*sin(omega*t);
24 % d=0.01, K/m = 0.4, forcing term = 0.2*W*sin(omega*t)
25

26 % theta'

27 ydot(3) = y(4);

28
29 % theta'' = -d*theta' - 3*(K/m)*cos(theta')
30 % *(en(a(y-1*sin(theta)))-

e(a(y+l*sin(theta))))-2)/1*a
31 ydot(4) = -d*y(4) + 1.2%cos(y(3))*(el-e2)/(len*a);
32 % 3K/m=1.2 => K/m = 0.4
33
34 end

1 function ydot = ydot3(t,y)
%ydot3 Initial Conditions

N

22

23
24
25
26
27
28
29
30

31
32
33

OLCoOoONOUTE WN R

=
(W)

Headley 22

% damping coefficient

d = 0.01;
len = 6;
a =0.2;

W = 50; % Torsionally stable
omega = 2*pi*38/60;

% e~(a(y-1*sin(theta)))
el = exp(a*(y(1)-len*sin(y(3))));

% e~(a(y+l*sin(theta)))
e2 = exp(a*(y(1)+len*sin(y(3))));

%y

ydot(1) = y(2);

% y'"' = -d*¥y' - (K/m)*(e~(a(y-1*sin(theta)))-
er(a(y+l*sin(theta))))-2)/a

% + (forcing term) % adds a strictly vertical oscillation
to bridge

ydot(2) = -d*y(2) - 0.4%(el+e2-2)/a + 0.2*W*sin(omega*t);
% d=0.01, K/m = 0.4, forcing term = 0.2*W*sin(omega*t)

% theta'
ydot(3) = y(4);

% theta'' = -d*theta' - 3*(K/m)*cos(theta')

% *(en(a(y-1*sin(theta)))-
e(a(y+l*sin(theta))))-2)/1*a

ydot(4) = -d*y(4) + 1.2%cos(y(3))*(el-e2)/(len*a);
% 3K/m=1.2 => K/m = 0.4

end
function ydot = ydota(t,y,W)
%ydot4 Initial Conditions

% damping coefficient
d =0.01;

len
a
omega

®II

6;
.2,
= 2*pi*38/60;

11
12
13
14
15
16
17
18
19
20

21

22
23
24
25
26
27
28
29

30
31
32
33

Headley 23

% e~(a(y-1*sin(theta)))
el = exp(a*(y(1)-len*sin(y(3))));

% e~(a(y+l*sin(theta)))
e2 = exp(a*(y(1)+len*sin(y(3))));

%y

ydot(1) = y(2);

% y'"' = -d*¥y' - (K/m)*(e~(a(y-1*sin(theta)))-
er(a(y+l*sin(theta))))-2)/a

% + (forcing term) % adds a strictly vertical oscillation
to bridge

ydot(2) = -d*y(2) - 0.4%(el+e2-2)/a + 0.2*W*sin(omega*t);
% d=0.01, K/m = 0.4, forcing term = 0.2*W*sin(omega*t)

% theta'
ydot(3) = y(4);

% theta'' = -d*theta' - 3*(K/m)*cos(theta')

% *(en(a(y-1*sin(theta)))-
er(a(y+l*sin(theta))))-2)/1*a

ydot(4) = -d*y(4) + 1.2%cos(y(3))*(el-e2)/(len*a);
% 3K/m=1.2 => K/m = 0.4

end

