The Tacoma Narrows Bridge

By: Adam Headley 998017147 27 May 2015

Abstract

This project is an example of experimental mathematics. The equations are too difficult to derive closed-form solutions, and even too difficult to prove qualitative results. Equipped with reliable ODE solvers, numerical trajectories for various parameter settings can illustrate the types of phenomena available to this model. Differential equation models can predict behavior and shed light on mechanisms in scientific and engineering problems. These problems and the following activities are borrowed from Sauer.

Introduction

McKenna and Tauma recently proposed a mathematical model that attempts to reproduce the Tacoma Narrows Bridge conditions and breakdown. The goal of this model was to explain how torsional (twisting) oscillations can be magnified by strictly vertical forces.

Consider a roadway of width 2l hanging between two suspended cables. For this model the bridges links dimension I will be ignored, only taking into consideration a two-dimensional slice of the bridge. The roadway hangs at a certain equilibrium height at rest due to gravity; let y denotes the distance from the roadway center of mass to its equilibrium position and angle θ of the roadway with the horizontal.

Figure 1: (Left) Cross-Section of Modeled Tacoma Narrows Bridge

Figure 2: (Right) Exponential Hooke's Law curve $f(y) = \frac{K}{a}(e^{ay} - 1)$.

Hooke's Law postulates a linear response, implying that the restoring force applied by the cables will be proportional to the deviation from equilibrium. Exponential Hooke's Law: $f(y) = \frac{K}{a}(e^{ay} - 1)$. Let θ be the angle the roadway makes with the horizontal. There are two suspension cables, deviates $y - l\sin\theta$ and $y + l\sin\theta$ from equilibrium, respectively. Given a viscous damping term assume that it is proportional to the velocity. Using Newton's lawF = ma and denoting Hooke's constant K, the equations of motion for y and θ are as follows:

$$y'' = -dy' - \left[\frac{K}{m}(y - l\sin\theta) + \frac{K}{m}(y + l\sin\theta)\right]$$

$$\theta'' = -dy + \frac{3\cos\theta}{l}\left[\frac{K}{m}(y - l\sin\theta) - \frac{K}{m}(y + l\sin\theta)\right]$$

Hooke's Law is designed for springs, where the restoring force is more or less equal whether the springs are compressed or stretched. McKenna and Tauma hypothesize that the cables pull back with more force when stretched than they push back with when compressed. (Think of a string as an example.) The linear Hooke's Law restoring force f(y) = Ky is replaced with a nonlinear force $f(y) = \frac{K}{a}(e^{ay} - 1)$. Both functions have the same slope K at y = 0; but for the nonlinear force, a positive y (stretched cable) causes a stronger restoring force than the corresponding negative y (slackened cable). Making this replacement in the preceding equation yields:

$$y'' = -dy - \frac{K}{ma} \left[e^{a(y-l\sin\theta)} - 1 + e^{a(y+l\sin\theta)} - 1 \right]$$

$$\theta'' = -d\theta' + \frac{3\cos\theta}{l} \frac{K}{ma} \left[e^{a(y-l\sin\theta)} - e^{a(y+l\sin\theta)} \right]$$

The state $y = y' = \theta = \theta' = 0$ is rests at equilibrium. Turning on the wind and add the forcing term $0.2W\sin(\omega t)$ to the right-hand side of the y equation, where W is the wind speed in km/hr. This adds a strictly vertical oscillation to the bridge.

Useful estimates for the physical constants can be made. The mass of a one-foot length of roadway was about 2500 kg, and the spring constant K has been estimate at 1000 Newtons. The roadway was about 12 meters wide. For this simulation, the damping coefficient was set at d=0.01, and the Hooke's nonlinearity coefficient a=0.2. An observer counted 38 vertical oscillations of the bridge in one minute shortly before the collapse which implies that $\omega=2\pi\frac{38}{60}$. These coefficients are only guesses, but they suffice to show ranges of motion that tend to match photographic evidence of the bridge's final oscillations. MATLAB code that runs the model is in the Appendix.

- A Running the MATLAB code **tacoma1.m** with wind speed W = 80 km/hr and initial conditions $y = y' = \theta' = 0$, $\theta = 10^{-2}$. In the torsional dimension, the bridge is stable if small disturbances in θ die out and unstable if small disturbances grow far beyond the original size. Observing the script.m (%% SCRIPT 1. block), watching the model bridge oscillate, it takes a while however, the small disturbances in θ grow far beyond the original size for W = 80 km/hr.
- B Replacing the Trapeziod Method with the Runge-Kutta Method of Order 4 (trapstep.m changes to rk4step.m in tacoma2.m) and running the same initial conditions as in tacoma1.m, wind speed W = 80 km/hr and initial conditions $y = y' = \theta' = 0$, $\theta = 10^{-2}$. The following figures below describe the y over time and θ over time. In the torsional dimension, the bridge is stable if small disturbances in θ die out and unstable if small disturbances grow far beyond the original size. Reference the script.m (%% SCRIPT 2. block).

Graph 1: Bridge's Center of Mass' Displacement from Equillibrium y(t) -2 -3 -5 -6 100 200 300 400 500 600 700 800 900 1000 t

Graph 2: Bridge's Torsional Displacement from Equillibrium

In Graph 1, the bridge's center of mass' displacement starts oscillating with large amplitude at a low frequency and then oscillates with a smaller amplitude at a higher frequency. The vertical oscillation is extreme in the beginning but then just before t=300 starts to shorten and become more frequent. In Graph 2, the bridge's torsional displacement starts small and then grows extremely large just after t=100 reaching its peak amplitude just before t=300. There seems to be a correlation here. Some of the energy from the vertical forces get transferred to the torsional forces changing θ more drastically. Under close observation one can spot a resonance in the bridge's oscillations of both graphs, in the darker shaded region.

The system is torsionally stable for W = 50 km/hr. The script.m (%% SCRIPT 3. Block) finds the magnification factor for initial conditions $y = y' = \theta' = 0$,

 \mathbf{C}

 $\theta(0) = 10^{-3}$ by using MATLAB code **tacoma3**.m which takes in **rk4step3**.m which takes in **ydot3**.m. The magnification factor is expressed as

$$MF = \frac{\max(\theta(t))}{\theta(0)}$$

the greatest angle divided by initial angle. For the specified initial conditions, the consistency of the magnification factors found from the initial angles are shown below:

Table 1: Consistency of the Magnification Factor for Initial Angles					
Initial Angle θ	Magnification Factor \approx	Consistent?			
10^{-3} to 10^{-16}	[19.1496572583, 19.6091562004]	Yes			
10^{-17}	9.13686692	No			
10 ⁻¹⁸	202.9913077372	No			
10 ⁻¹⁹	356.2421906764				
10^{-20} and on	1	Yes			

As can be see in Table 1, the magnification factor is not approximately consistent for all values of $\theta(0) = 10^{-3}$, 10^{-4} , 10^{-5} , ..., specifically $\theta(0) = 10^{-17}$, 10^{-18} , 10^{-19} . $\theta(0) = 10^{-20}$ is very small to have such a nice looking number, this is most likely from truncation error while using $\theta(0)$

D To find a minimum wind speed, W, with $\theta(0) = 10^{-3}$ such that the magnification factor of 100 or more is produced, ydot4.m and rk4step4.m were created to take in one more variable, W, and perform the same as ydot3.m and rk4step3.m otherwise. The script.m (%% SCRIPT 4. Block) finds the magnification factor for small initial angle, $\theta(0) = 10^{-3}$, using MATLAB code tacoma4.m. The loop in the script runs through values of W stepping by size s and stops when magnification factor is 100 or more.

Table 2: Tests Ran to Determine a Convergent Wind Speed					
Run	Initial Wind Speed	Stepsize	Wind Speed	Magnification Factor	
$1^{\rm st}$	50	1	59	102.2220310286	
2^{nd}	58	0.1	59.0	102.2220310286	
3^{rd}	58.9	0.01	58.95	100.1476473096	
$4^{ m th}$	58.94	0.001	58.947	100.0247617444	
$5^{ m th}$	58.946	0.0001	58.9464	100.0002059828	

The wind speed values are converging to $W \approx 58.9463$ km/hr as the magnification factor consistently converges to MF = 100.

E Implementing the Secant Method, the minimum wind speed in part D is computed to within 0.5×10^{-3} in the **script.**m (%% SCRIPT 5. Block). Calculates magnification factors using **tacoma4**.m for 2 different wind speeds and combines them using the Secant Method to create a new wind speed using MATLAB code **tacoma5**.m. The Secant Method approximates the derivative of the magnification factor with respect to the wind speed multiplies it by the magnification factor of the second point and then subtracts it from the second wind speed, calculating a new wind speed:

$$W_3 = W_2 - \frac{MF_2(W_2 - W_1)}{MF_2 - MF_1}$$

Where W_3 converges to the minimum wind speed within the given tolerance, $58.9463949662 \frac{\mathrm{km}}{\mathrm{hr}} \approx 58.9464 \frac{\mathrm{km}}{\mathrm{hr}}$ after 9 iterations of the Secant Method.

When trying larger values of W, not all extremely small initial angles (10^{-3}) eventually grow to catastrophic size. The bridge breaks when the magnification factor is greater than 100. This occurs for wind speeds, W, approximately greater than 58.9464 km/hr as shown in part E. The **script**.m (%% SCRIPT 6. Block) uses **tacoma4**.m to calculate the magnification factor for larger values of W. However, wind speed anomalies that allow the bridge to stay in good condition occur in [78.8,79.6] by increments of .1. These anomalies are caused by the damping forces dissipating the energy that is contributed by a resonant excitation to the system at its natural frequency.

Conclusion

If a sinusoidal driving force is applied at the resonant frequency of the oscillator, then its motion will build up in amplitude to the point where it is limited by the damping forces on the system. If the damping forces are small, a resonant system can build up to amplitudes large enough to be destructive to the system. Since a resonant excitation will continue to contribute energy to the system at its natural frequency, the amplitude of oscillation will continue to grow until the damping forces dissipate that energy, or until something destructive happens to the system. (Driven Oscillator & Resonant Excitation, Hyper Physics)

McKenna suggests that perhaps the replacement of the linear small angle approximation for the motion of the bridge by the proper trigonometric functions could provide a sufficient non-linearity to cause the bridge to collapse. By calculating the response of such a non-linear oscillator with a force containing constant frequency and amplitude, it can be argued that the non-linearities of the trigonometric functions alone can allow for the same kind of bimodal response, with large amplitude oscillations when the linear case may not. Although these models provide a more complete analysis of motion, this analysis ignores the cause of the driving forces entirely. The sinusoidal forces applied on the bridge are assumed to have a constant period and amplitude to drive the resonance. Without understanding the origin and fluctuation of these forces, introducing the non-linearities gains an incomplete insight into the cause of the collapse of the bridge. (Tacoma Bridge Failure, Green & Unruh, University of British Columbia)

$\begin{array}{c} {\rm Appendix} \\ {\rm (12\ functions,\ 6\ scripts)} \end{array}$

SCRIPT (with 6 blocks)

```
1 %% SCRIPT 1.
3 % Running tacoma.m with wind speed W = 80 km/hr
4 % initial conditions y = y' = theta' = 0, theta = 0.001.
6 % The bridge is stable in the torsional dimension
7 % if small disturbances in theta die out
9 % The bridge is unstable in the torsional dimension
     % if the small disturbances grow far beyond the originial size
10
11
12
    a = 0;
13
    b = 1000;
14
15
    y1 = 0;
16
    y2 = 0;
17
    theta1 = 10^-2;
18
    theta2 = 0;
19
20
    tacoma1([a b],[y1 y2 theta1 theta2],.04,3);
21
22
     % For W = 80,
23
     % The small disturbances in theta grow far beyond the original
     size.
     % Therefore, the bridge is unstable and breaks.
24
25
26
27
     %-----%
28
     %% SCRIPT 2.
29
30
     % Replaces the trapeziod method with the Runge-Kutta Method of
     Order 4
     % trapstep.m -> rk4step.m
31
    % Plots y(t) and theta(t)
32
33
34
    a = 0;
```

```
b = 1000;
35
36
37
     y1 = 0;
38
     y2 = 0;
39
     theta1 = 10^-2;
     theta2 = 0;
40
41
42
     [time, z1, z3] = tacoma2([a b], [y1 y2 theta1 theta2], .04,3);
43
44
     % y vs. time
45
     figure
     plot(time,z1,'b')
46
47
     hold on
48
     legend('y(t)')
49
     z1min = min(z1);
     z1max = max(z1);
50
51
     axis([a b z1min z1max])
52
     xlabel('t')
53
     ylabel('y')
54
55
     % theta vs. time
56
     figure
     plot(time,z3,'r')
57
58
     hold on
59
     legend('y(t)')
     z3min = min(z3);
60
61
     z3max = max(z3);
     axis([a b z3min z3max])
62
63
     xlabel('t')
64
     ylabel('theta')
65
66
     %-----%
67
     %% SCRIPT 3.
68
69
70
     format long;
71
72
     % The system is torsionally stable for W = 50 \text{ km/hr}.
     % Finds magnification factor for small initial angle, theta(0) =
73
     10^-3
74
     % Magnification Factor = Maximum Angle theta(t) / Initial Angle
     theta(0)
75
76
     a = 0;
77
     b = 1000;
78
```

```
79
     v1 = 0;
80
     y2 = 0;
81
     theta2 = 0;
82
83
    tend = 23;
84
     MF2 = zeros(tend-2,1);
85
86
     % loop
87
     for t = 3:tend
88
        theta1 = 10^-t;
89
90
         [time, z1, z3] = tacoma3([a b], [y1 y2 theta1 theta2], .04,3);
91
         close
92
93
        % Magnification Factor
        MF2(t-2) = max(abs(z3))/z3(1);
94
95
         fprintf('Magnification Factor with starting theta = 10^-%d is
     \%.10f \n',t,MF2(t-2)
96
     end
97
98
     % The Magnification Factor is approximately consistent @ MF = 19
     (approx.)
99
     % for initial theta from 10^-3 to 10^-16.
100
101
     % The Magnification Factor is approximately consistent @ MF = 1
     % for initial theta from 10^-20 on.
102
103
104
    %-----%
105
106
    %% SCRIPT 4.
107
     % Finding minimum W with theta(0) = 10^{(-3)}
108
109
     % producing a magnification factor of 100 or more
     % ydot4 takes in one more variable, W, and performs the same as
110
     ydot
111
112
     a = 0;
113
    b = 1000;
114
115
    y1 = 0;
116 y2 = 0;
117 theta1 = 10^-3;
118
    theta2 = 0;
119
120 % loop looks at values of W stepping by size s
121
     % stops when MF is 100 or more
```

```
122
123 W = 58.9; % starting value
124 \quad s = .001;
                  % step size of W
125 MF = 1; % Step Size of W

125 mr = 1; % Initialize MF to run while loop
    while MF < 100
126
127
        [\sim, \sim, z3] = tacoma4([a b], [y1 y2 theta1 theta2], .04,3,W);
128
        close
        MF = \max(abs(z3))/z3(1);
129
130
        if MF < 100
131
            W = W + S;
132
        end
133
    end
134
     fprintf('For W = %.10f, the Magnification Factor is %.10f < 100</pre>
     \n', W, MF
135
    % Tests
136
    % First run: W = 50, S = 1 -> W = 59,
137
138
                                         MF = 102.2220310286
    % Second run: W = 58, S = 0.1 -> W = 59.0,
139
140
                                         MF = 102.2220310286
    % Third run: W = 58.9, s = 0.01 \rightarrow W = 58.95, ...
141
142
                                         MF = 100.1476473096
    % Fourth run: W = 58.94, S = 0.001 -> W = 58.947, ...
143
                                         MF = 100.0247617444
144
     % Fifth run: W = 58.946, S = 0.0001 -> W = 58.9464,
145
146
                                         MF = 100.0002059828
147
148
149
     %-----%
150
    %% SCRIPT 5.
151
152
     % Method for calculating minimum windspeed to within 0.5x10^-3
     km/hr.
153
154
    W1 = 80;
155
    W2 = 50;
156
     % Secant Method
157
158
     [W3,iterations] = tacoma5(W1,W2);
159
     % W3 converges to 58.946394966 km/hr in ## iterations.
160
161
162
     %-----%
163
164
    %% SCRIPT 6.
165
```

```
% When trying larger values of W,
166
     % not all extremely small initial angles (10^-3) eventually grow
167
     % to catastrophic size.
168
169
170
    a = 0;
171
     b = 1000;
172
173 y1 = 0;
174 y2 = 0;
175
    theta1 = 10^-3;
176 theta2 = 0;
177
178
    s = .2;
                     % step size of W
179
    MF = 1;
                     % Initialize MF to run while loop
180
     for W = 50:s:150
181
         [\sim, \sim, z3] = tacoma4([a b], [y1 y2 theta1 theta2], .04,3,W);
182
         close
183
         MF = \max(abs(z3))/z3(1);
         if MF < 100
184
             fprintf('Good Condition, For W = %.1f, the Magnification
185
     Factor is %.10f \n', W, MF)
186
187
             fprintf('Broke Condition, For W = %.1f, the Magnification
     Factor is %.10f \n', W, MF)
188
         end
189
     end
190
191
     % For an initial he bridge breaks when the Magnification Factor
       is greater than 100
     % This occurs for wind speeds, W, greater than 58.9464 km/hr
192
     % Wind speed anomalies that allow the bridge to stay in
193
     % good condition occur in [78.6,79.8]
194
       by increments of .2. Because the frequency
```

TACOMA#.m

```
195
     function tacoma1(inter,ic,h,p)
196
     %Program 6.6 Animation program for bridge using IVP solver
197
     %Inputs: int = [a b] time interval,
198
199
              ic = [y(1,1) \ y(1,2) \ y(1,3) \ y(1,4)],
200
              h = stepsize
201
              p = steps per point plotted
202
203
     %Calls a one-step method: trapstep.m
204
205
     %Example usage: tacoma([0 1000],[1 0 0.001 0],.04,3)
206
     % clear figure window
207
208
     clf
209
210 % plot n points
211 a = inter(1);
212 b = inter(2);
213 n = ceil((b-a)/(h*p));
214
215
     % Initial Conditions
    y(1,:) = ic;
216
217
    t(1) = a;
218
    len = 6;
     set(gca,'XLim',[-8 8],'YLim',[-8 8], ...
219
220
          'XTick',[-8 0 8],'YTick',[-8 0 8], ...
221
         'Drawmode', 'fast', 'Visible', 'on', 'NextPlot', 'add');
222
223
     % initialize broken criterion
224
     broke = 0;
225
226
     tic
227
228
     % clear screen
229
     cla;
230
231
     % make aspect ratio 1-1
232
     axis square
     road = line('color','b','LineStyle','-','LineWidth',5,...
233
234
              'erase', 'xor', 'xdata',[], 'ydata',[]);
     lbroke = line('color','r','LineStyle','-','LineWidth',5,...
235
              'erase', 'xor', 'xdata',[], 'ydata',[]);
236
```

```
rbroke = line('color','r','LineStyle','-','LineWidth',5,...
237
238
               'erase','xor','xdata',[],'ydata',[]);
     lcable = line('color','k','LineStyle','-','LineWidth',1,...
239
               'erase', 'xor', 'xdata', [], 'ydata', []);
240
241
     rcable = line('color','k','LineStyle','-','LineWidth',1,...
               'erase', 'xor', 'xdata', [], 'ydata', []);
242
243
     Y = figure;
244
245
     T = figure;
246
247
     for k = 1:n
248
249
          for i = 1:p
250
              t(i+1) = t(i)+h;
251
252
              % 1 step method
253
              y(i+1,:) = trapstep(t(i),y(i,:),h);
254
255
              time(k) = t(i);
256
          end
257
          y(1,:) = y(p+1,:);
258
          t(1) = t(p+1);
          z1(k) = y(1,1);
259
260
          z3(k) = y(1,3);
261
262
          c = len*cos(y(1,3));
263
          s = len*sin(y(1,3));
264
265
          % Magnification Factor
266
         MF = \max(z3)/z3(1);
267
268
         % Breaking the bridge
269
          if MF > 100
270
              broke = 1;
271
          end
272
          if broke == 1
273
              set(road, 'xdata', [-c c], 'ydata', [0 0])
274
275
              set(lbroke, 'xdata', [-c -c], 'ydata', [-s-y(1,1) s-y(1,1)-
     len/2]
              set(rbroke, 'xdata', [c c], 'ydata', [s-y(1,1) s-y(1,1)-
276
     len/2]
277
          else
278
              set(road, 'xdata', [-c c], 'ydata', [-s-y(1,1) s-y(1,1)])
279
          end
          set(lcable, 'xdata', [-c -c], 'ydata', [-s-y(1,1) 8])
280
```

```
281
         set(rcable, 'xdata', [c c], 'ydata', [s-y(1,1) 8])
282
         drawnow; pause(h)
283
         % Graph y(t) and theta(t)
284
285
         figure(Y);
         plot(time,z1,'b')
286
         figure(T);
287
         plot(time,z3,'r')
288
289
290
     end
291
     toc
292
293
     end
     function [time,z1,z3] = tacoma2(inter,ic,h,p)
1
2
     %Program 6.6 Animation program for bridge using IVP solver
3
4
     %Inputs: int = [a b] time interval,
5
               ic = [y(1,1) \ y(1,2) \ y(1,3) \ y(1,4)],
6
     %
               h = stepsize
7
               p = steps per point plotted
8
9
     %Calls a one-step method: rk4step.m
10
     %Example usage: tacoma([0 1000],[1 0 0.001 0],.04,3)
11
12
13
     % clear figure window
14
     clf
15
16
     % plot n points
     a = inter(1);
17
18
     b = inter(2);
19
     n = ceil((b-a)/(h*p));
20
21
     % Initial Conditions
     y(1,:) = ic;
22
23
     t(1) = a;
24
     len = 6;
25
26
     tic
27
     for k = 1:n
28
29
         for i = 1:p
30
              t(i+1) = t(i)+h;
31
```

```
32
             % 1 step method
33
             y(i+1,:) = rk4step(t(i),y(i,:),h);
34
35
             % time vector for plots
             time(k) = t(i);
36
37
         end
38
39
         y(1,:) = y(p+1,:);
40
         t(1) = t(p+1);
         z1(k) = y(1,1);
41
42
         z3(k) = y(1,3);
43
44
     end
45
     toc
46
47
     end
     function [time,z1,z3] = tacoma3(inter,ic,h,p)
1
     %Program 6.6 Animation program for bridge using IVP solver
2
3
4
     %Inputs: int = [a b] time interval,
               ic = [y(1,1) \ y(1,2) \ y(1,3) \ y(1,4)],
5
     %
               h = stepsize
6
7
               p = steps per point plotted
8
9
     %Calls a one-step method: rk4step.m
10
11
     %Example usage: tacoma([0 1000],[1 0 0.001 0],.04,3)
12
13
     % clear figure window
14
     clf
15
16
     % plot n points
     a = inter(1);
17
18
     b = inter(2);
19
     n = ceil((b-a)/(h*p));
20
21
     % Initial Conditions
22
     y(1,:) = ic;
23
     t(1) = a;
24
     len = 6;
25
26
     tic
27
     for k = 1:n
28
```

```
29
         for i = 1:p
30
             t(i+1) = t(i)+h;
31
32
             % 1 step method
33
             y(i+1,:) = rk4step3(t(i),y(i,:),h);
34
35
             % time vector for plots
36
             time(k) = t(i);
37
         end
38
39
         y(1,:) = y(p+1,:);
40
         t(1) = t(p+1);
41
         z1(k) = y(1,1);
42
         z3(k) = y(1,3);
43
44
     end
45
     toc
46
47
     end
     function [time,z1,z3] = tacoma4(inter,ic,h,p,W)
1
     %Program 6.6 Animation program for bridge using IVP solver
2
3
4
     %Inputs: int = [a b] time interval,
5
               ic = [y(1,1) \ y(1,2) \ y(1,3) \ y(1,4)],
6
     %
               h = stepsize
7
               p = steps per point plotted
8
9
     %Calls a one-step method: trapstep.m or rk4.m
10
11
     %Example usage: tacoma([0 1000],[1 0 0.001 0],.04,3)
12
     % clear figure window
13
14
     clf
15
16
     % plot n points
17
     a = inter(1);
18
     b = inter(2);
19
     n = ceil((b-a)/(h*p));
20
     % Initial Conditions
21
22
     y(1,:) = ic;
23
     t(1) = a;
24
     len = 6;
25
```

```
for k = 1:n
26
27
          for i = 1:p
28
              t(i+1) = t(i)+h;
29
30
              % 1 step method
              y(i+1,:) = rk4step4(t(i),y(i,:),h,W);
31
32
33
              % time vector for plots
34
              time(k) = t(i);
35
          end
36
37
         y(1,:) = y(p+1,:);
          t(1) = t(p+1);
38
39
          z1(k) = y(1,1);
40
          z3(k) = y(1,3);
41
     end
42
43
     end
     function [W,iterations] = tacoma5(W1,W2)
1
2
     %tacoma5 Calculates magnification factors using tacoma4.m
     % for 2 different wind speeds.
3
     % Combines them using the Secant Method to create a new wind
4
     speed.
     % Secant Method computes the derivative of the magnification
5
     factor
     % with respect to the wind speed
6
7
     % These wind speeds converge
8
9
     % Initial Conditions
10
     inter = [0 \ 1000];
11
     ic = [0 \ 0 \ 0.001 \ 0];
12
     h = .04;
     p = 3;
13
14
15
     % Comparing Iterations
16
     TOL = 100;
17
     iteration = 0;
18
19
     while TOL > 0.5*10^{(-3)}
20
21
          [\sim, \sim, z32] = tacoma4(inter, ic, h, p, W2);
22
          [\sim, \sim, z31] = tacoma4(inter, ic, h, p, W1);
23
          close
24
```

```
25
         MF2 = 100 - \max(z32)/z32(1);
26
         MF1 = 100 - \max(z31)/z31(1);
27
         % Secant Method
28
29
         W3 = W2 - ((MF2)*(W2-W1))/(MF2-MF1);
30
         fprintf('Secant Method produces new wind speed, W = %.10f
     \n',W3)
31
32
         % Update Tolerance
         TOL = max(abs(W3-W1), abs(W3-W2));
33
34
         if TOL <= 0.5*10^{(-3)}
35
36
             W = W3;
             iterations = iteration;
37
38
             return
39
         end
40
         W1=W2;
41
42
         W2=W3;
43
44
         iteration = iteration + 1;
45
     end
46
47
48
     end
```

TRAPSTEP.m

```
function y = trapstep(t,x,h)
mathematical function y = trapstep(t,x
```

RK4STEP#.m

```
function y = rk4step(t,w,h)
1
     %rk4step: 1 step of the Runge-Kutta's Method of Order 4
2
3
4
     K1 = ydot(t,w);
     K2 = ydot(t+h/2, w+h*K1/2);
5
     K3 = ydot(t+h/2, w+h*K2/2);
6
     K4 = ydot(t+h,w+h*K3);
7
8
     y = w+h*(K1+2*K2+2*K3+K4)/6;
9
     end
     function y = rk4step3(t,w,h)
1
     %rk4step3: 1 step of the Runge-Kutta's Method of Order 4
2
3
     K1 = ydot3(t,w);
4
     K2 = ydot3(t+h/2,w+h*K1/2);
5
     K3 = ydot3(t+h/2,w+h*K2/2);
6
7
     K4 = ydot3(t+h,w+h*K3);
     y = w+h*(K1+2*K2+2*K3+K4)/6;
8
9
     end
     function y = rk4step4(t,w,h,W)
1
2
     %rk4: 1 step of the Runge-Kutta's Method of Order 4
3
4
     K1 = ydot4(t, w, W);
     K2 = ydot4(t+h/2,w+h*K1/2,W);
5
     K3 = ydot4(t+h/2,w+h*K2/2,W);
6
     K4 = ydot4(t+h,w+h*K3,W);
7
     y = w+h*(K1+2*K2+2*K3+K4)/6;
8
9
     end
```

YDOT#.m

```
1
     function ydot = ydot(t,y)
2
     %ydot Initial Conditions
3
4
     % damping coefficient
5
     d = 0.01;
6
7
     len = 6;
8
     a = 0.2;
9
     W = 80;
10
     omega = 2*pi*38/60;
11
12
     % e^{(a(y-1*sin(theta)))}
13
     e1 = exp(a*(y(1)-len*sin(y(3))));
14
15
     % e^(a(y+l*sin(theta)))
16
     e2 = exp(a*(y(1)+len*sin(y(3))));
17
     % v'
18
19
     ydot(1) = y(2);
20
     % y'' = -d*y' - (K/m)*(e^(a(y-1*sin(theta)))-
21
     e^{(a(y+1*sin(theta)))-2)/a}
             + (forcing term) % adds a strictly vertical oscillation
22
     %
     to bridge
     ydot(2) = -d*y(2) - 0.4*(e1+e2-2)/a + 0.2*W*sin(omega*t);
23
24
     % d = 0.01, K/m = 0.4, forcing term = 0.2*W*sin(omega*t)
25
26
     % theta'
27
     ydot(3) = y(4);
28
29
     % theta'' = -d*theta' - 3*(K/m)*cos(theta')
30
                            *(e^(a(y-1*sin(theta)))-
     e^{(a(y+1*sin(theta)))-2)/1*a}
     ydot(4) = -d*y(4) + 1.2*cos(y(3))*(e1-e2)/(len*a);
31
32
     % 3K/m = 1.2 \Rightarrow K/m = 0.4
33
34
     end
1
     function ydot = ydot3(t,y)
     %ydot3 Initial Conditions
2
3
```

```
% damping coefficient
4
     d = 0.01;
5
6
7
     len = 6;
8
     a = 0.2;
9
     W = 50; % Torsionally stable
10
     omega = 2*pi*38/60;
11
12
     % e^{(a(y-1*sin(theta)))}
13
     e1 = exp(a*(y(1)-len*sin(y(3))));
14
15
     % e^(a(y+l*sin(theta)))
16
     e2 = exp(a*(y(1)+len*sin(y(3))));
17
     % v'
18
19
     ydot(1) = y(2);
20
     y'' = -d*y' - (K/m)*(e^(a(y-1*sin(theta)))-
21
     e^{(a(y+1*sin(theta)))-2)/a}
22
             + (forcing term) % adds a strictly vertical oscillation
     to bridge
23
     ydot(2) = -d*y(2) - 0.4*(e1+e2-2)/a + 0.2*W*sin(omega*t);
     % d = 0.01, K/m = 0.4, forcing term = 0.2*W*sin(omega*t)
24
25
26
     % theta'
27
     ydot(3) = y(4);
28
29
     % theta'' = -d*theta' - 3*(K/m)*cos(theta')
30
                            *(e^(a(y-1*sin(theta)))-
     e^{(a(y+1*sin(theta)))-2)/1*a}
     ydot(4) = -d*y(4) + 1.2*cos(y(3))*(e1-e2)/(len*a);
31
32
     % 3K/m = 1.2 \Rightarrow K/m = 0.4
33
34
     end
1
     function ydot = ydot4(t,y,W)
2
     %ydot4 Initial Conditions
3
4
     % damping coefficient
5
     d = 0.01;
6
7
     len = 6;
     a = 0.2;
8
9
     omega = 2*pi*38/60;
10
```

```
11
     % e^{(a(y-1*sin(theta)))}
12
     e1 = exp(a*(y(1)-len*sin(y(3))));
13
14
     % e^(a(y+l*sin(theta)))
15
     e2 = exp(a*(y(1)+len*sin(y(3))));
16
     % y'
17
     ydot(1) = y(2);
18
19
     y'' = -d*y' - (K/m)*(e^(a(y-1*sin(theta)))-
20
     e^{(a(y+1*sin(theta)))-2)/a}
21
     %
             + (forcing term) % adds a strictly vertical oscillation
     to bridge
     ydot(2) = -d*y(2) - 0.4*(e1+e2-2)/a + 0.2*W*sin(omega*t);
22
23
     % d = 0.01, K/m = 0.4, forcing term = 0.2*W*sin(omega*t)
24
     % theta'
25
26
     ydot(3) = y(4);
27
28
     % theta'' = -d*theta' - 3*(K/m)*cos(theta')
29
     %
                            *(e^(a(y-l*sin(theta)))-
     e^{(a(y+1*sin(theta)))-2)/1*a}
     ydot(4) = -d*y(4) + 1.2*cos(y(3))*(e1-e2)/(len*a);
30
     % 3K/m = 1.2 \Rightarrow K/m = 0.4
31
32
33
     end
```